Photo AI

The functions $f$ and $g$ are defined by $$egin{align*} f: & x ightarrow 1 - 2x^3, \, x \, ext{in } \, extbf{R} \\ g: & x ightarrow \frac{3}{x} - 4, \, x > 0, \, x \, \text{in } \, extbf{R} \\ \\ ext{(a) Find the inverse function } f^{-1} - Edexcel - A-Level Maths Pure - Question 8 - 2008 - Paper 6

Question icon

Question 8

The-functions-$f$-and-$g$-are-defined-by--$$egin{align*}-f:-&-x--ightarrow-1---2x^3,-\,-x-\,--ext{in-}-\,--extbf{R}-\\-g:-&-x--ightarrow-\frac{3}{x}---4,-\,-x->-0,-\,-x-\,-\text{in-}-\,--extbf{R}-\\-\\--ext{(a)-Find-the-inverse-function-}-f^{-1}-Edexcel-A-Level Maths Pure-Question 8-2008-Paper 6.png

The functions $f$ and $g$ are defined by $$egin{align*} f: & x ightarrow 1 - 2x^3, \, x \, ext{in } \, extbf{R} \\ g: & x ightarrow \frac{3}{x} - 4, \, x > 0, ... show full transcript

Worked Solution & Example Answer:The functions $f$ and $g$ are defined by $$egin{align*} f: & x ightarrow 1 - 2x^3, \, x \, ext{in } \, extbf{R} \\ g: & x ightarrow \frac{3}{x} - 4, \, x > 0, \, x \, \text{in } \, extbf{R} \\ \\ ext{(a) Find the inverse function } f^{-1} - Edexcel - A-Level Maths Pure - Question 8 - 2008 - Paper 6

Step 1

Find the inverse function $f^{-1}$

96%

114 rated

Answer

To find the inverse function, we start with the equation for yy:

y=12x3y = 1 - 2x^3

We solve for xx:

y1=2x3y - 1 = -2x^3

2x3=1y2x^3 = 1 - y

x3=1y2x^3 = \frac{1 - y}{2}

Therefore,

x=1y23x = \sqrt[3]{\frac{1 - y}{2}}

Thus, the inverse function is:

f1(y)=1y23f^{-1}(y) = \sqrt[3]{\frac{1 - y}{2}}.

Step 2

Show that the composite function $gf$ is $gf: x \rightarrow \frac{8x^2 - 1}{1 - 2x^2}$

99%

104 rated

Answer

To find the composite function gf(x)gf(x), we substitute f(x)f(x) into g(x)g(x). First, we start with:

f(x)=12x3f(x) = 1 - 2x^3

Substituting f(x)f(x) into g(x)g(x) gives:

g(f(x))=g(12x3)=312x34g(f(x)) = g(1 - 2x^3) = \frac{3}{1 - 2x^3} - 4

This simplifies to:

g(f(x))=34(12x3)12x3=34+8x312x3=8x3112x3g(f(x)) = \frac{3 - 4(1 - 2x^3)}{1 - 2x^3} = \frac{3 - 4 + 8x^3}{1 - 2x^3} = \frac{8x^3 - 1}{1 - 2x^3}

Hence, we confirm that:

gf:x8x2112x2gf: x \rightarrow \frac{8x^2 - 1}{1 - 2x^2}.

Step 3

Solve $gf(x) = 0$

96%

101 rated

Answer

To solve for gf(x)=0gf(x) = 0, we set the numerator equal to zero:

8x21=08x^2 - 1 = 0

Solving for xx, we get:

8x2=18x^2 = 1

x2=18x^2 = \frac{1}{8}

x=±122x = \pm \frac{1}{2\sqrt{2}}

Since the function gg is defined for x>0x > 0, we take:

x=122x = \frac{1}{2\sqrt{2}}.

Step 4

Use calculus to find the coordinates of the stationary point on the graph of $y = gf(x)$

98%

120 rated

Answer

To find stationary points, we differentiate gf(x)gf(x):

dydx=(12x2)(16x)(8x21)(4x)(12x2)2\frac{dy}{dx} = \frac{(1 - 2x^2)(16x) - (8x^2 - 1)(-4x)}{(1 - 2x^2)^2}

Setting the numerator equal to zero for stationary points gives:

18x2=018x^2 = 0

Thus, x=0x = 0. Now substituting back to find yy:

gf(0)=8(0)2112(0)2=1gf(0) = \frac{8(0)^2 - 1}{1 - 2(0)^2} = -1

Therefore, the coordinates of the stationary point are:

(0,1)(0, -1).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;