Photo AI

12. (a) Prove \[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 2 \cot 2\theta \] \( \theta \pm (90n)^{\circ}, n \in \mathbb{Z} \) (b) Hence solve, for \( 90^{\circ} < \theta < 180^{\circ} \), the equation \[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 4 \] giving any solutions to one decimal place. - Edexcel - A-Level Maths Pure - Question 13 - 2019 - Paper 2

Question icon

Question 13

12.-(a)-Prove--\[-\frac{\cos-3\theta}{\sin\theta}-+-\frac{\sin-3\theta}{\cos\theta}-=-2-\cot-2\theta-\]--\(-\theta-\pm-(90n)^{\circ},-n-\in-\mathbb{Z}-\)--(b)-Hence-solve,-for-\(-90^{\circ}-<-\theta-<-180^{\circ}-\),-the-equation--\[-\frac{\cos-3\theta}{\sin\theta}-+-\frac{\sin-3\theta}{\cos\theta}-=-4-\]--giving-any-solutions-to-one-decimal-place.-Edexcel-A-Level Maths Pure-Question 13-2019-Paper 2.png

12. (a) Prove \[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 2 \cot 2\theta \] \( \theta \pm (90n)^{\circ}, n \in \mathbb{Z} \) (b) Hence ... show full transcript

Worked Solution & Example Answer:12. (a) Prove \[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 2 \cot 2\theta \] \( \theta \pm (90n)^{\circ}, n \in \mathbb{Z} \) (b) Hence solve, for \( 90^{\circ} < \theta < 180^{\circ} \), the equation \[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 4 \] giving any solutions to one decimal place. - Edexcel - A-Level Maths Pure - Question 13 - 2019 - Paper 2

Step 1

Prove \( \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 2 \cot 2\theta \)

96%

114 rated

Answer

To prove the identity, we start with the left-hand side:

[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = \frac{\cos 3\theta \cos\theta + \sin 3\theta \sin\theta}{\sin\theta \cos\theta} ]

Using the angle addition formula, we find that:

[ \cos 3\theta = 2\cos^2 1.5\theta - 1 \quad \text{and} \quad \sin 3\theta = 3\sin\theta - 4\sin^3\theta ]

Substituting these into our equation leads to:

[ \cos(3\theta) \cos(\theta) + \sin(3\theta) \sin(\theta) = \cos(3\theta - \theta) = \cos(2\theta) ]

Thus, the left-hand side simplifies to:

[ \frac{\cos(2\theta)}{\sin\theta \cos\theta} = \frac{1}{\sin 2\theta} = 2 \cot 2\theta ]

Hence proved.

Step 2

Hence solve, for \( 90^{\circ} < \theta < 180^{\circ} \), the equation \( \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 4 \)

99%

104 rated

Answer

Starting with the proven equation:

[ \frac{\cos 3\theta}{\sin\theta} + \frac{\sin 3\theta}{\cos\theta} = 4 ]

This can be rewritten as:

[ \cos 3\theta \cos\theta + \sin 3\theta \sin\theta = 4 \sin\theta \cos\theta ]

Using the identity from part (a), we replace the left side:

[ 2 \cot 2\theta = 4 ]

This implies:

[ \cot 2\theta = 2 ]

Then, we take the arctangent:

[ 2\theta = \arctan(2) ]

So, we can calculate:

[ \theta = \frac{1}{2} \arctan(2) \approx 103.3^{\circ} ]

Given the constraints of ( 90^{\circ} < \theta < 180^{\circ} ), this is the only solution.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;