Photo AI

Show that 2 tan x - cot x = 5 cosec x may be written in the form $a \cos^2 x + b \cos x + c = 0$ stating the values of the constants $a$, $b$ and $c$ - Edexcel - A-Level Maths Pure - Question 4 - 2014 - Paper 6

Question icon

Question 4

Show-that-2-tan-x---cot-x-=-5-cosec-x-may-be-written-in-the-form-$a-\cos^2-x-+-b-\cos-x-+-c-=-0$-stating-the-values-of-the-constants-$a$,-$b$-and-$c$-Edexcel-A-Level Maths Pure-Question 4-2014-Paper 6.png

Show that 2 tan x - cot x = 5 cosec x may be written in the form $a \cos^2 x + b \cos x + c = 0$ stating the values of the constants $a$, $b$ and $c$. Hence solve, ... show full transcript

Worked Solution & Example Answer:Show that 2 tan x - cot x = 5 cosec x may be written in the form $a \cos^2 x + b \cos x + c = 0$ stating the values of the constants $a$, $b$ and $c$ - Edexcel - A-Level Maths Pure - Question 4 - 2014 - Paper 6

Step 1

Show that 2 tan x - cot x = 5 cosec x may be written in the form a cos^2 x + b cos x + c = 0

96%

114 rated

Answer

To start, we can express the terms in sine and cosine: 2tanxcotx=2sinxcosxcosxsinx2 \tan x - \cot x = 2 \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}

Next, finding a common denominator gives: 2sin2xcos2xsinxcosx=51sinx\frac{2 \sin^2 x - \cos^2 x}{\sin x \cos x} = 5 \frac{1}{\sin x}

Multiplying through by sinxcosx\sin x \cos x leads to: 2sin2xcos2x=5cosx2 \sin^2 x - \cos^2 x = 5 \cos x

Rearranging terms: 2sin2x5cosxcos2x=02 \sin^2 x - 5 \cos x - \cos^2 x = 0

Using the identity sin2x=1cos2x\sin^2 x = 1 - \cos^2 x, we substitute: 2(1cos2x)5cosxcos2x=02(1 - \cos^2 x) - 5 \cos x - \cos^2 x = 0

This simplifies to: 3cos2x5cosx+2=0-3 \cos^2 x - 5 \cos x + 2 = 0

Thus, we identify:

  • a=3a = -3,
  • b=5b = -5,
  • c=2c = 2.

Step 2

Hence solve, for 0 ≤ x < 2π, the equation 2 tan x - cot x = 5 cosec x

99%

104 rated

Answer

From the earlier manipulation, we have established: 3cos2x+5cosx2=03 \cos^2 x + 5 \cos x - 2 = 0

Using the quadratic formula: cosx=b±b24ac2a\cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Substituting a=3a = 3, b=5b = 5, and c=2c = -2:

cosx=5±524(3)(2)2(3)=5±25+246\cos x = \frac{-5 \pm \sqrt{5^2 - 4(3)(-2)}}{2(3)} = \frac{-5 \pm \sqrt{25 + 24}}{6}

Calculating further: cosx=5±76\cos x = \frac{-5 \pm 7}{6}

This results in two cases:

  1. (\cos x = \frac{2}{6} = \frac{1}{3})
  2. (\cos x = \frac{-12}{6} = -2) (reject as not valid)

For (\cos x = \frac{1}{3}), we find: x=cos1(13)x = \cos^{-1}\left(\frac{1}{3}\right) Calculating further, we find two values for xx in the range 0x<2π0 \leq x < 2\pi: x1.231 and x5.050x \approx 1.231 \text{ and } x \approx 5.050

Thus, to 3 significant figures, x1.23x \approx 1.23 and x5.05x \approx 5.05.

Step 3

Show that tan θ + cot θ = λ cosec 2θ, θ ∈ nπ/2, n ∈ ℤ

96%

101 rated

Answer

Starting with: tanθ+cotθ=sinθcosθ+cosθsinθ\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}

Combining these yields: tanθ+cotθ=sin2θ+cos2θsinθcosθ=1sinθcosθ\tan \theta + \cot \theta = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta}

Recognizing that: sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta

Thus, we can rewrite our expression: tanθ+cotθ=2sin2θ=λcsc2θ\tan \theta + \cot \theta = \frac{2}{\sin 2\theta} = \lambda \csc 2\theta

Identifying the constant: λ=2\lambda = 2.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;