Photo AI

Given that $ ext{sin}^2 heta + ext{cos}^2 heta ext{ } ext{≡ } 1$, show that $1 + ext{cot}^2 heta ext{ } ext{≡ } ext{cosec}^2 heta$ - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 5

Question icon

Question 6

Given-that-$-ext{sin}^2-heta-+--ext{cos}^2-heta--ext{-}--ext{≡-}-1$,-show-that-$1-+--ext{cot}^2-heta--ext{-}--ext{≡-}--ext{cosec}^2-heta$-Edexcel-A-Level Maths Pure-Question 6-2008-Paper 5.png

Given that $ ext{sin}^2 heta + ext{cos}^2 heta ext{ } ext{≡ } 1$, show that $1 + ext{cot}^2 heta ext{ } ext{≡ } ext{cosec}^2 heta$. (b) Solve, for $0 < heta... show full transcript

Worked Solution & Example Answer:Given that $ ext{sin}^2 heta + ext{cos}^2 heta ext{ } ext{≡ } 1$, show that $1 + ext{cot}^2 heta ext{ } ext{≡ } ext{cosec}^2 heta$ - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 5

Step 1

Given that sin²θ + cos²θ ≡ 1, show that 1 + cot²θ ≡ cosec²θ

96%

114 rated

Answer

To show that 1+cot2θcosec2θ1 + \text{cot}^2\theta \equiv \text{cosec}^2\theta, we start from the Pythagorean identity:

  1. We know that: sin2θ+cos2θ=1\text{sin}^2\theta + \text{cos}^2\theta = 1

  2. Dividing the entire equation by sin2θ\text{sin}^2\theta, we get: sin2θsin2θ+cos2θsin2θ=1sin2θ\frac{\text{sin}^2\theta}{\text{sin}^2\theta} + \frac{\text{cos}^2\theta}{\text{sin}^2\theta} = \frac{1}{\text{sin}^2\theta} This simplifies to: 1+cot2θ=cosec2θ1 + \text{cot}^2\theta = \text{cosec}^2\theta.

Step 2

Solve, for 0 < θ < 180°, the equation 2 cot²θ - 9 cosecθ = 3

99%

104 rated

Answer

To solve the equation 2cot2θ9cosecθ3=02 \text{cot}^2\theta - 9 \text{cosec}\theta - 3 = 0, we proceed as follows:

  1. Substitute cosecθ=1sinθ\text{cosec}\theta = \frac{1}{\text{sin}\theta} and cotθ=cosθsinθ\text{cot}\theta = \frac{\text{cos}\theta}{\text{sin}\theta}: 2(cos2θsin2θ)9(1sinθ)=32 \left(\frac{\text{cos}^2\theta}{\text{sin}^2\theta}\right) - 9 \left(\frac{1}{\text{sin}\theta}\right) = 3

  2. Rearranging gives: 2cosec2θ9cosecθ3=02 \text{cosec}^2\theta - 9 \text{cosec}\theta - 3 = 0

  3. Let y=cosecθy = \text{cosec}\theta, then: 2y29y3=02y^2 - 9y - 3 = 0

  4. Solving this quadratic equation using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: y=9±9242(3)22y = \frac{9 \pm \sqrt{9^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2} which simplifies to: y=9±81+244=9±1054y = \frac{9 \pm \sqrt{81 + 24}}{4} = \frac{9 \pm \sqrt{105}}{4}

  5. Calculating the two possible values for cosecθ\text{cosec}\theta gives: cosecθ=y1 and y2\text{cosec}\theta = y_1 \text{ and } y_2

  6. Converting back to θ\theta:

    • For the positive root, we find: θ11.5\theta \approx 11.5^\circ
    • For the negative root, we find: θ168.5\theta \approx 168.5^\circ

Thus, the solutions to the equation are approximately: θ=11.5,168.5\theta = 11.5^\circ, 168.5^\circ.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;