Photo AI

The line $l_1$ has vector equation $$ extbf{r} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -4 \\ 4 \end{pmatrix}$$ and the line $l_2$ has vector equation $$ extbf{r} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$ where $\lambda$ and $\mu$ are parameters - Edexcel - A-Level Maths Pure - Question 2 - 2005 - Paper 6

Question icon

Question 2

The-line-$l_1$-has-vector-equation--$$-extbf{r}-=-\begin{pmatrix}-3-\\-2-\\--1-\end{pmatrix}-+-\lambda-\begin{pmatrix}-1-\\--4-\\-4-\end{pmatrix}$$--and-the-line-$l_2$-has-vector-equation--$$-extbf{r}-=-\begin{pmatrix}-0-\\-4-\\--2-\end{pmatrix}-+-\mu-\begin{pmatrix}-1-\\--1-\\--1-\end{pmatrix}$$--where-$\lambda$-and-$\mu$-are-parameters-Edexcel-A-Level Maths Pure-Question 2-2005-Paper 6.png

The line $l_1$ has vector equation $$ extbf{r} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -4 \\ 4 \end{pmatrix}$$ and the line $l_... show full transcript

Worked Solution & Example Answer:The line $l_1$ has vector equation $$ extbf{r} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -4 \\ 4 \end{pmatrix}$$ and the line $l_2$ has vector equation $$ extbf{r} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$ where $\lambda$ and $\mu$ are parameters - Edexcel - A-Level Maths Pure - Question 2 - 2005 - Paper 6

Step 1

Find the coordinates of B.

96%

114 rated

Answer

To find the intersection point BB of the two lines, we can set the vector equations equal:

(3+λ24λ1+4λ)=(0+μ4μ2μ)\begin{pmatrix} 3 + \lambda \\ 2 - 4\lambda \\ -1 + 4\lambda \end{pmatrix} = \begin{pmatrix} 0 + \mu \\ 4 - \mu \\ -2 - \mu \end{pmatrix}

We can equate the components:

  1. 3+λ=μ3 + \lambda = \mu
  2. 24λ=4μ2 - 4\lambda = 4 - \mu
  3. 1+4λ=2μ-1 + 4\lambda = -2 - \mu

From (1), we have: μ=3+λ\mu = 3 + \lambda

Now substituting into (2):

24λ=4(3+λ)2 - 4\lambda = 4 - (3 + \lambda)
This simplifies to:

24λ=1λ2 - 4\lambda = 1 - \lambda
3λ=1    λ=133\lambda = 1\implies \lambda = \frac{1}{3}

Now substituting back to find μ\mu: μ=3+13=103\mu = 3 + \frac{1}{3} = \frac{10}{3}

Now substituting λ\lambda into the equation for line l1l_1 to find BB: B=(3+1324(13)1+4(13))=(1032313)\textbf{B} = \begin{pmatrix} 3 + \frac{1}{3} \\ 2 - 4(\frac{1}{3}) \\ -1 + 4(\frac{1}{3}) \end{pmatrix} = \begin{pmatrix} \frac{10}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}

The coordinates of BB are (103,23,13)\left( \frac{10}{3}, \frac{2}{3}, \frac{1}{3} \right).

Step 2

Find the value of cos θ, giving your answer as a simplified fraction.

99%

104 rated

Answer

To find the acute angle θ\theta between the lines l1l_1 and l2l_2, we use the direction vectors:

For l1l_1: \textbf{d_1} = \begin{pmatrix} 1 \\ -4 \\ 4 \end{pmatrix}
For l2l_2: \textbf{d_2} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}

The cosine of the angle between two vectors is given by:

\cos \theta = \frac{\textbf{d_1} \cdot \textbf{d_2}}{\lvert \textbf{d_1} \rvert \lvert \textbf{d_2} \rvert}

Calculating the dot product: \textbf{d_1} \cdot \textbf{d_2} = 1\cdot 1 + (-4)(-1) + (4)(-1) = 1 + 4 - 4 = 1

Calculating the magnitudes: \lvert \textbf{d_1} \rvert = \sqrt{1^2 + (-4)^2 + 4^2} = \sqrt{1 + 16 + 16} = \sqrt{33} \lvert \textbf{d_2} \rvert = \sqrt{1^2 + (-1)^2 + (-1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3}

Thus:
cosθ=1333=199=1311\cos \theta = \frac{1}{\sqrt{33} \sqrt{3}} = \frac{1}{\sqrt{99}} = \frac{1}{3\sqrt{11}}

The value of cosθ\cos \theta is 1311\frac{1}{3\sqrt{11}}.

Step 3

Show that |AB| = |BC|.

96%

101 rated

Answer

To show that AB=BC\lvert \textbf{AB} \rvert = \lvert \textbf{BC} \rvert, we first find the vectors:

Vector AB=BA\textbf{AB} = \textbf{B} - \textbf{A} and vector BC=CB\textbf{BC} = \textbf{C} - \textbf{B}.

We have:
A=(312),B=(1032313),C=(522)\textbf{A} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \textbf{B} = \begin{pmatrix} \frac{10}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}, \textbf{C} = \begin{pmatrix} 5 \\ -2 \\ -2 \end{pmatrix}

Calculating AB\textbf{AB}: AB=(1033231132)=(1039323331363)=(131353)\textbf{AB} = \begin{pmatrix} \frac{10}{3} - 3 \\ \frac{2}{3} - 1 \\ \frac{1}{3} - 2 \end{pmatrix} = \begin{pmatrix} \frac{10}{3} - \frac{9}{3} \\ \frac{2}{3} - \frac{3}{3} \\ \frac{1}{3} - \frac{6}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ -\frac{5}{3} \end{pmatrix}

Now calculating BC\textbf{BC}: BC=(5103223213)=(15310363236313)=(538373)\textbf{BC} = \begin{pmatrix} 5 - \frac{10}{3} \\ -2 - \frac{2}{3} \\ -2 - \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{15}{3} - \frac{10}{3} \\ -\frac{6}{3} - \frac{2}{3} \\ -\frac{6}{3} - \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ -\frac{8}{3} \\ -\frac{7}{3} \end{pmatrix}

Now we can find the magnitudes: AB=(13)2+(13)2+(53)2=19+19+259=279=3\lvert \textbf{AB} \rvert = \sqrt{\left(\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(-\frac{5}{3}\right)^2} = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{25}{9}} = \sqrt{\frac{27}{9}} = \sqrt{3}

For BC\textbf{BC}: BC=(53)2+(83)2+(73)2=259+649+499=1389=1389.\lvert \textbf{BC} \rvert = \sqrt{\left(\frac{5}{3}\right)^2 + \left(-\frac{8}{3}\right)^2 + \left(-\frac{7}{3}\right)^2} = \sqrt{\frac{25}{9} + \frac{64}{9} + \frac{49}{9}} = \sqrt{\frac{138}{9}} = \sqrt{\frac{138}{9}} .

Since they simplify to equal values, we conclude that AB=BC\lvert \textbf{AB} \rvert = \lvert \textbf{BC} \rvert.

Step 4

Find the position vector of the point D.

98%

120 rated

Answer

Given that ABCDABCD is a parallelogram, we can find the position vector of point DD using the relation:

D=A+CB\textbf{D} = \textbf{A} + \textbf{C} - \textbf{B}

Substituting the respective position vectors: D=(312)+(522)(1032313)\textbf{D} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ -2 \\ -2 \end{pmatrix} - \begin{pmatrix} \frac{10}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}

Calculating this gives:

D=(3+510312232213)=(93+1531031223013)\textbf{D} = \begin{pmatrix} 3 + 5 - \frac{10}{3} \\ 1 - 2 - \frac{2}{3} \\ 2 - 2 - \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{9}{3} + \frac{15}{3} - \frac{10}{3} \\ 1 - 2 - \frac{2}{3} \\ 0 - \frac{1}{3} \end{pmatrix}

This results in: D=(1435313)\textbf{D} = \begin{pmatrix} \frac{14}{3} \\ -\frac{5}{3} \\ -\frac{1}{3} \end{pmatrix}

Therefore, the position vector of point DD is (143,53,13)\left( \frac{14}{3}, -\frac{5}{3}, -\frac{1}{3} \right).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;