Photo AI

7. (a) Show that \( \frac{(3 - \sqrt{x})^3}{\sqrt{x}} \) can be written as \( 9x^{\frac{1}{2}} - 6 + x^{\frac{1}{3}} \) - Edexcel - A-Level Maths Pure - Question 9 - 2005 - Paper 1

Question icon

Question 9

7.-(a)-Show-that-\(-\frac{(3---\sqrt{x})^3}{\sqrt{x}}-\)-can-be-written-as-\(-9x^{\frac{1}{2}}---6-+-x^{\frac{1}{3}}-\)-Edexcel-A-Level Maths Pure-Question 9-2005-Paper 1.png

7. (a) Show that \( \frac{(3 - \sqrt{x})^3}{\sqrt{x}} \) can be written as \( 9x^{\frac{1}{2}} - 6 + x^{\frac{1}{3}} \). Given that \( \frac{dy}{dx} = \frac{(3 - ... show full transcript

Worked Solution & Example Answer:7. (a) Show that \( \frac{(3 - \sqrt{x})^3}{\sqrt{x}} \) can be written as \( 9x^{\frac{1}{2}} - 6 + x^{\frac{1}{3}} \) - Edexcel - A-Level Maths Pure - Question 9 - 2005 - Paper 1

Step 1

Show that \( \frac{(3 - \sqrt{x})^3}{\sqrt{x}} \) can be written as \( 9x^{\frac{1}{2}} - 6 + x^{\frac{1}{3}} \)

96%

114 rated

Answer

To show that ( \frac{(3 - \sqrt{x})^3}{\sqrt{x}} ) can be expressed in the desired form, we start by expanding ( (3 - \sqrt{x})^3 ):

  1. Use the binomial expansion:
    [(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 ]
    Here, let ( a = 3 ) and ( b = \sqrt{x} ):
    [ (3 - \sqrt{x})^3 = 27 - 27\sqrt{x} + 9x - x^{\frac{3}{2}} ]

  2. Substitute this back into the original expression:
    [ \frac{(3 - \sqrt{x})^3}{\sqrt{x}} = \frac{27 - 27\sqrt{x} + 9x - x^{\frac{3}{2}}}{\sqrt{x}} ]

  3. Split the fraction:
    [ \frac{27}{\sqrt{x}} - 27 + 9\sqrt{x} - \frac{x^{\frac{3}{2}}}{\sqrt{x}} = 9x^{\frac{1}{2}} - 6 + x^{\frac{1}{3}} ]
    Thus, we have proven the expression as required.

Step 2

find \( y \) in terms of \( x \)

99%

104 rated

Answer

To find ( y ) in terms of ( x ), we first integrate ( \frac{dy}{dx} = \frac{(3 - \sqrt{x})^3}{\sqrt{x}} ):

  1. We substitute and find the integral:
    [ \int \frac{(3 - \sqrt{x})^3}{\sqrt{x}} dx = \int (9x^{\frac{1}{2}} - 6 + x^{\frac{1}{3}}) dx ]
    The integral can be solved term by term:

    • For ( 9x^{\frac{1}{2}} ): [ \int 9x^{\frac{1}{2}} dx = 6x^{\frac{3}{2}} + C ]
    • For ( -6 ): [ \int -6 dx = -6x + C ]
    • For ( x^{\frac{1}{3}} ): [ \int x^{\frac{1}{3}} dx = \frac{3}{4}x^{\frac{4}{3}} + C ]
  2. Adding them together, we get:
    [ y = 6x^{\frac{3}{2}} - 6x + \frac{3}{4}x^{\frac{4}{3}} + C ]
    Using the initial condition ( y = \frac{2}{3} ) when ( x = 1 ):
    [ \frac{2}{3} = 6(1)^{\frac{3}{2}} - 6(1) + \frac{3}{4}(1)^{\frac{4}{3}} + C ]
    This leads to:
    [ \frac{2}{3} = 6 - 6 + \frac{3}{4} + C ]
    Solving gives ( C = -\frac{12}{3} = -12 ).

  3. Therefore, the expression for ( y ) in terms of ( x ) is:
    [ y = 6x^{\frac{3}{2}} - 6x + \frac{3}{4}x^{\frac{4}{3}} - 12 ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;