Photo AI

7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^{2}} \ln(3x)$ (ii) $\frac{1-10x}{(2x-1)^{5}}$ giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 5

Question icon

Question 8

7.-(a)-Differentiate-with-respect-to-$x$,----(i)-$\frac{1}{x^{2}}-\ln(3x)$----(ii)-$\frac{1-10x}{(2x-1)^{5}}$-giving-your-answer-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 8-2012-Paper 5.png

7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^{2}} \ln(3x)$ (ii) $\frac{1-10x}{(2x-1)^{5}}$ giving your answer in its simplest form. (b) Given t... show full transcript

Worked Solution & Example Answer:7. (a) Differentiate with respect to $x$, (i) $\frac{1}{x^{2}} \ln(3x)$ (ii) $\frac{1-10x}{(2x-1)^{5}}$ giving your answer in its simplest form - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 5

Step 1

(i) $\frac{1}{x^{2}} \ln(3x)$

96%

114 rated

Answer

To differentiate 1x2ln(3x)\frac{1}{x^{2}} \ln(3x), we will apply the product rule. Let:

  • u=ln(3x)u = \ln(3x)
  • v=1x2v = \frac{1}{x^{2}}

Then, we have:

dudx=13x3=1x\frac{du}{dx} = \frac{1}{3x} \cdot 3 = \frac{1}{x}
dvdx=2x3\frac{dv}{dx} = -\frac{2}{x^{3}}

Using the product rule, ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}:

ddx(1x2ln(3x))=ln(3x)(2x3)+1x21x\frac{d}{dx}\left(\frac{1}{x^{2}} \ln(3x)\right) = \ln(3x) \left(-\frac{2}{x^{3}}\right) + \frac{1}{x^{2}} \cdot \frac{1}{x}

Which simplifies to:

ddx(1x2ln(3x))=2ln(3x)x3+1x3=12ln(3x)x3\frac{d}{dx}\left(\frac{1}{x^{2}} \ln(3x)\right) = -\frac{2 \ln(3x)}{x^{3}} + \frac{1}{x^{3}} = \frac{1 - 2 \ln(3x)}{x^{3}}

This is the required derivative.

Step 2

(ii) $\frac{1-10x}{(2x-1)^{5}}$

99%

104 rated

Answer

To differentiate 110x(2x1)5\frac{1-10x}{(2x-1)^{5}}, we will use the quotient rule. Let:

  • f=110xf = 1 - 10x
  • g=(2x1)5g = (2x - 1)^{5}

We have:

dfdx=10\frac{df}{dx} = -10
dgdx=5(2x1)42=10(2x1)4\frac{dg}{dx} = 5(2x - 1)^{4} \cdot 2 = 10(2x - 1)^{4}

Using the quotient rule:

ddx(fg)=gdfdxfdgdxg2\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{g \frac{df}{dx} - f \frac{dg}{dx}}{g^{2}}

Substituting into the quotient rule gives:

(2x1)5(10)(110x)(10(2x1)4)(2x1)10\frac{(2x - 1)^{5} (-10) - (1 - 10x)(10(2x - 1)^{4})}{(2x - 1)^{10}}

This simplifies to:

10(2x1)5+10(110x)(2x1)4(2x1)10=10(110x10)(2x1)4(2x1)10\frac{-10(2x - 1)^{5} + 10(1 - 10x)(2x - 1)^{4}}{(2x - 1)^{10}} = \frac{10(1 - 10x - 10)(2x - 1)^{4}}{(2x - 1)^{10}}

So the simplified answer becomes:
10(10x9)(2x1)6\frac{10(-10x - 9)}{(2x - 1)^{6}}

Step 3

Given that $x = 3 \tan 2y$, find $\frac{dy}{dx}$ in terms of $x$.

96%

101 rated

Answer

To find dydx\frac{dy}{dx} given x=3tan2yx = 3 \tan 2y, we will differentiate implicitly.
Starting with:
dxdy=3ddy(tan2y)=32sec2(2y)dydy\frac{dx}{dy} = 3 \cdot \frac{d}{dy}(\tan 2y) = 3 \cdot 2 \sec^{2}(2y) \cdot \frac{dy}{dy}
Thus, we have:
dxdy=6sec2(2y)\frac{dx}{dy} = 6 \sec^{2}(2y)
To find dydx\frac{dy}{dx}, we take the reciprocal:
dydx=16sec2(2y)\frac{dy}{dx} = \frac{1}{6 \sec^{2}(2y)}
Now, using the identity sec2(2y)=1+tan2(2y)\sec^{2}(2y) = 1 + \tan^{2}(2y) and substituting back for xx:
Since tan2y=x3\tan 2y = \frac{x}{3}, we have sec2(2y)=1+(x3)2=1+x29\sec^{2}(2y) = 1 + \left(\frac{x}{3}\right)^{2} = 1 + \frac{x^{2}}{9}, therefore:
dydx=16(1+x29)=16+23x2\frac{dy}{dx} = \frac{1}{6(1 + \frac{x^{2}}{9})} = \frac{1}{6 + \frac{2}{3}x^{2}}
This is the expression for dydx\frac{dy}{dx} in terms of xx.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;