To show that dxd(secx)=secxtanx, we start by expressing secx in terms of cosx:
secx=cosx1.
Using the quotient rule:
dxd(secx)=dxd(cosx1)=(cosx)20⋅cosx−(−sinx)⋅1=(cosx)2sinx
Recognizing that tanx=cosxsinx gives us:
(cosx)2sinx=secxtanx.
Thus, we have shown that dxd(secx)=secxtanx.