Photo AI

Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ Given that $$x = \sec 2y$$ (b) find $$\frac{dx}{dy}$$ in terms of y - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 4

Question icon

Question 1

Given-that--$$\frac{d}{dx}(\cos-x)-=--\sin-x$$-show-that-$$\frac{d}{dx}(\sec-x)-=-\sec-x-\tan-x.$$--Given-that-$$x-=-\sec-2y$$-(b)-find-$$\frac{dx}{dy}$$-in-terms-of-y-Edexcel-A-Level Maths Pure-Question 1-2010-Paper 4.png

Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ Given that $$x = \sec 2y$$ (b) find $$\frac{dx}{dy}$$ in terms of... show full transcript

Worked Solution & Example Answer:Given that $$\frac{d}{dx}(\cos x) = -\sin x$$ show that $$\frac{d}{dx}(\sec x) = \sec x \tan x.$$ Given that $$x = \sec 2y$$ (b) find $$\frac{dx}{dy}$$ in terms of y - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 4

Step 1

Given that $$\frac{d}{dx}(\cos x) = -\sin x$$

96%

114 rated

Answer

To show that ddx(secx)=secxtanx\frac{d}{dx}(\sec x) = \sec x \tan x, we start by expressing secx\sec x in terms of cosx\cos x:

secx=1cosx\sec x = \frac{1}{\cos x}.

Using the quotient rule:

ddx(secx)=ddx(1cosx)=0cosx(sinx)1(cosx)2=sinx(cosx)2\frac{d}{dx}(\sec x) = \frac{d}{dx}\left(\frac{1}{\cos x}\right) = \frac{0 \cdot \cos x - (-\sin x) \cdot 1}{(\cos x)^2} = \frac{\sin x}{(\cos x)^2}

Recognizing that tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} gives us:

sinx(cosx)2=secxtanx.\frac{\sin x}{(\cos x)^2} = \sec x \tan x.

Thus, we have shown that ddx(secx)=secxtanx\frac{d}{dx}(\sec x) = \sec x \tan x.

Step 2

Given that $$x = \sec 2y$$

99%

104 rated

Answer

To find dxdy\frac{dx}{dy}, we start by differentiating with respect to y:

Using the chain rule:

dxdy=ddy(sec2y)=sec2ytan2yddy(2y)=2sec2ytan2y.\frac{dx}{dy} = \frac{d}{dy}(\sec 2y) = \sec 2y \tan 2y \cdot \frac{d}{dy}(2y) = 2 \sec 2y \tan 2y.

Step 3

Hence find $$\frac{dy}{dx}$$

96%

101 rated

Answer

To find dydx\frac{dy}{dx}, we use the relationship:

dydx=1dxdy.\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}. Substituting in the expression from part (b):

dydx=12sec2ytan2y.\frac{dy}{dx} = \frac{1}{2 \sec 2y \tan 2y}. Finally, using the identity 1+tan2A=sec2A1 + \tan^2 A = \sec^2 A, we can express this in terms of x:

Substituting x=sec2yx = \sec 2y:

dydx=1x2tan2y.\frac{dy}{dx} = \frac{1}{x^2 \tan 2y}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;