Photo AI

6. (a) Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + heta)$ where $R > 0$ and $0 < heta < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 5

Question icon

Question 7

6.-(a)-Express-$3-\,--ext{sin}-\,-x-+-2-\,--ext{cos}-\,-x$-in-the-form-$R-\,--ext{sin}(x-+--heta)$-where-$R->-0$-and-$0-<--heta-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 7-2007-Paper 5.png

6. (a) Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + heta)$ where $R > 0$ and $0 < heta < \frac{\pi}{2}$. (b) Hence find t... show full transcript

Worked Solution & Example Answer:6. (a) Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + heta)$ where $R > 0$ and $0 < heta < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 5

Step 1

(a) Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + \alpha)$

96%

114 rated

Answer

To express 3extsinx+2extcosx3 \, ext{sin} \, x + 2 \, ext{cos} \, x in the form Rextsin(x+α)R \, ext{sin}(x + \alpha), we start by identifying RR and α\alpha using the formulas:

  1. Calculate R=(3)2+(2)2=9+4=13R = \sqrt{(3)^2 + (2)^2} = \sqrt{9 + 4} = \sqrt{13}.
  2. Calculate sinα\sin \alpha and cosα\cos \alpha:
    • sinα=2R=213\sin \alpha = \frac{2}{R} = \frac{2}{\sqrt{13}} and cosα=3R=313\cos \alpha = \frac{3}{R} = \frac{3}{\sqrt{13}}.
  3. From this, we can find α\alpha:
    • Using tanα=sinαcosα=2/133/13=23\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2/\sqrt{13}}{3/\sqrt{13}} = \frac{2}{3}, hence α=tan1(23)0.588\alpha = \tan^{-1}(\frac{2}{3}) \approx 0.588 radians.

Thus, we can express 3extsinx+2extcosx3 \, ext{sin} \, x + 2 \, ext{cos} \, x in the form 13sin(x+0.588)\sqrt{13} \, \text{sin}(x + 0.588).

Step 2

(b) Hence find the greatest value of $(3 \, ext{sin} \, x + 2 \, ext{cos} \, x)^4$

99%

104 rated

Answer

The expression Rsin(x+α)R \, \text{sin}(x + \alpha) has a maximum value of RR since the range of sine function is from -1 to 1. Here, the maximum value of 3extsinx+2extcosx3 \, ext{sin} \, x + 2 \, ext{cos} \, x is 13\sqrt{13}. Thus, the greatest value of (3sinx+2cosx)4(3 \, \text{sin} \, x + 2 \, \text{cos} \, x)^4 is:

(13)4=132=169.\left(\sqrt{13}\right)^4 = 13^2 = 169.

Step 3

(c) Solve, for $0 < x < 2\pi$, the equation $3 \, \text{sin} \, x + 2 \, \text{cos} \, x = 1$

96%

101 rated

Answer

To solve the equation 3sinx+2cosx=13 \, \text{sin} \, x + 2 \, \text{cos} \, x = 1, we can rewrite it as: 13sin(x+0.588)=1,\sqrt{13} \, \text{sin}(x + 0.588) = 1, which simplifies to: sin(x+0.588)=1130.277.\text{sin}(x + 0.588) = \frac{1}{\sqrt{13}} \approx 0.277.

The solutions for sinθ=k\text{sin} \theta = k are given by: θ=sin1(k)+2kπ and θ=πsin1(k)+2kπ.\theta = \sin^{-1}(k) + 2k\pi \text{ and } \theta = \pi - \sin^{-1}(k) + 2k\pi.

Thus, calculating for our case:

  1. First solution: x+0.588=sin1(0.277)0.281+2kπ, k=0    x0.2810.588=0.307.x + 0.588 = \sin^{-1}(0.277) \approx 0.281 + 2k\pi,\ k=0\implies x \approx 0.281 - 0.588 = -0.307. (Disregard since not in range.)
  2. Second solution: x+0.588=πsin1(0.277)π0.2812.860    x2.8600.588=2.272.x + 0.588 = \pi - \sin^{-1}(0.277) \approx \pi - 0.281 \approx 2.860\implies x \approx 2.860 - 0.588 = 2.272.
  3. For the second cycle: x+0.588=2πsin1(0.277)6.10    x6.100.588=5.513.x + 0.588 = 2\pi - \sin^{-1}(0.277) \approx 6.10 \implies x \approx 6.10 - 0.588 = 5.513.

Therefore, the values of xx that satisfy the equation are approximately:

  • x2.272x \approx 2.272
  • x5.513x \approx 5.513 (to three decimal places).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;