Photo AI

Express $6 \, \cos \theta + 8 \, \sin \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 26 - 2013 - Paper 1

Question icon

Question 26

Express-$6-\,-\cos-\theta-+-8-\,-\sin-\theta$-in-the-form-$R-\cos(\theta---\alpha)$,-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 26-2013-Paper 1.png

Express $6 \, \cos \theta + 8 \, \sin \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. Give the value of \alpha$ to 3... show full transcript

Worked Solution & Example Answer:Express $6 \, \cos \theta + 8 \, \sin \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 26 - 2013 - Paper 1

Step 1

Express $6 \cos \theta + 8 \sin \theta$ in the form $R \cos(\theta - \alpha)$

96%

114 rated

Answer

To express 6cosθ+8sinθ6 \cos \theta + 8 \sin \theta in the form Rcos(θα)R \cos(\theta - \alpha), we need to find RR and α\alpha. Using Pythagoras' theorem:

R2=62+82=36+64=100R=10.R^2 = 6^2 + 8^2 = 36 + 64 = 100 \Rightarrow R = 10.
To find α\alpha, we use:

$$\tan \alpha = \frac{8}{6} \Rightarrow \alpha = \arctan\left(\frac{8}{6}\right) \approx 0.927.Thus,wecanexpress Thus, we can express6 \cos \theta + 8 \sin \theta$ as:

10cos(θ0.927).10 \cos(\theta - 0.927).

Step 2

Calculate $p(\theta)$

99%

104 rated

Answer

Now substituting α\alpha into p(θ)p(\theta) gives:

p(θ)=412+10cosθ.p(\theta) = \frac{4}{12 + 10 \cos \theta}.
We find the maximum of this function. To do this, we first find the critical points. The maximum value occurs when cosθ\cos \theta is minimized. Since the minimum value of cosθ\cos \theta is -1, we substitute:

p(θ)=412+10(1)=42=2.p(\theta) = \frac{4}{12 + 10(-1)} = \frac{4}{2} = 2.
Thus, the maximum value of p(θ)p(\theta) is 22.

Step 3

Find the value of $\theta$ at which the maximum occurs

96%

101 rated

Answer

The maximum occurs when:

cosθ=1θ=π.\cos \theta = -1 \Rightarrow \theta = \pi.
Thus, the value of θ\theta at which the maximum occurs is θ3.142\theta \approx 3.142.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;