Photo AI

The curve shown in Figure 2 has parametric equations $x = 2 \, ext{sin} \, t, \quad y = 1 - 2 \, ext{cos} \, t, \quad 0 \leq t \leq 2\pi$ - Edexcel - A-Level Maths Pure - Question 1 - 2005 - Paper 7

Question icon

Question 1

The-curve-shown-in-Figure-2-has-parametric-equations--$x-=-2-\,--ext{sin}-\,-t,-\quad-y-=-1---2-\,--ext{cos}-\,-t,-\quad-0-\leq-t-\leq-2\pi$-Edexcel-A-Level Maths Pure-Question 1-2005-Paper 7.png

The curve shown in Figure 2 has parametric equations $x = 2 \, ext{sin} \, t, \quad y = 1 - 2 \, ext{cos} \, t, \quad 0 \leq t \leq 2\pi$. (a) Show that the curv... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 2 has parametric equations $x = 2 \, ext{sin} \, t, \quad y = 1 - 2 \, ext{cos} \, t, \quad 0 \leq t \leq 2\pi$ - Edexcel - A-Level Maths Pure - Question 1 - 2005 - Paper 7

Step 1

Show that the curve crosses the x-axis where $t = \frac{\pi}{3}$ and $t = \frac{5\pi}{3}$

96%

114 rated

Answer

To determine where the curve crosses the x-axis, we need to find the values of tt for which y=0y = 0.

Starting from the equation for yy:

y=12cost=0y = 1 - 2 \, \text{cos} \, t = 0

Solving for cost\, \text{cos} \, t, we get:

12cost=0    cost=121 - 2 \, \text{cos} \, t = 0 \implies \text{cos} \, t = \frac{1}{2}

The values of tt within the range 0t2π0 \leq t \leq 2\pi that satisfy this equation are:

t=π3andt=5π3.t = \frac{\pi}{3} \quad \text{and} \quad t = \frac{5\pi}{3}.

Step 2

Show that the area $R$ is given by the integral $$\int_0^{\frac{\pi}{3}} (1 - 2 \, \text{cos} \ t) \, dt.$$

99%

104 rated

Answer

The area under the curve can be computed using the formula for the area between a curve and the x-axis from the point of intersection. We first express the area RR as:

abydx\int_a^b y \, dx.

Here, the limits of integration are from t=0t = 0 to t=π3t = \frac{\pi}{3}, and therefore:

A=0π3(12cost)dxdtdt=0π3(12cost)dt.A = \int_0^{\frac{\pi}{3}} (1 - 2 \, \text{cos} \, t) \, \frac{dx}{dt} \, dt = \int_0^{\frac{\pi}{3}} (1 - 2 \, \text{cos} \, t) \, dt.

Step 3

Use this integral to find the exact value of the shaded area.

96%

101 rated

Answer

To find the exact value of the shaded area, we evaluate the integral:

A=0π3(12cost)dtA = \int_0^{\frac{\pi}{3}} (1 - 2 \, \text{cos} \, t) \, dt

This can be separated into two simpler integrals:

A=0π31dt20π3costdt.A = \int_0^{\frac{\pi}{3}} 1 \, dt - 2 \int_0^{\frac{\pi}{3}} \text{cos} \, t \, dt.

Calculating the first integral:

0π31dt=[t]0π3=π3.\int_0^{\frac{\pi}{3}} 1 \, dt = \left[t\right]_0^{\frac{\pi}{3}} = \frac{\pi}{3}.

For the second integral, we have:

0π3costdt=[sint]0π3=sin(π3)sin(0)=32.\int_0^{\frac{\pi}{3}} \text{cos} \, t \, dt = \left[\text{sin} \, t\right]_0^{\frac{\pi}{3}} = \text{sin} \left(\frac{\pi}{3}\right) - \text{sin} (0) = \frac{\sqrt{3}}{2}.

Now substituting these values back into the area calculation:

A=π3232=π33.A = \frac{\pi}{3} - 2 \cdot \frac{\sqrt{3}}{2} = \frac{\pi}{3} - \sqrt{3}.

Thus, the exact value of the shaded area is:

π33.\frac{\pi}{3} - \sqrt{3}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;