Photo AI

2. (a) Show that the equation 5sin x = 1 + 2cos^2 x can be written in the form 2sin^2 x + 5sin x - 3 = 0 (b) Solve, for 0 ≤ x < 360°, 2sin^2 x + 5sin x - 3 = 0 - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 4

Question icon

Question 4

2.-(a)-Show-that-the-equation--------5sin-x-=-1-+-2cos^2-x--------can-be-written-in-the-form--------2sin^2-x-+-5sin-x---3-=-0-----(b)-Solve,-for-0-≤-x-<-360°,--------2sin^2-x-+-5sin-x---3-=-0-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 4.png

2. (a) Show that the equation 5sin x = 1 + 2cos^2 x can be written in the form 2sin^2 x + 5sin x - 3 = 0 (b) Solve, for 0 ≤ x < 360°, ... show full transcript

Worked Solution & Example Answer:2. (a) Show that the equation 5sin x = 1 + 2cos^2 x can be written in the form 2sin^2 x + 5sin x - 3 = 0 (b) Solve, for 0 ≤ x < 360°, 2sin^2 x + 5sin x - 3 = 0 - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 4

Step 1

Show that the equation 5sin x = 1 + 2cos^2 x can be written in the form 2sin^2 x + 5sin x - 3 = 0

96%

114 rated

Answer

To show that the equation can be rewritten, we start with the original equation:

5extsinx=1+2extcos2x5 ext{sin} x = 1 + 2 ext{cos}^2 x

Using the identity extcos2x=1extsin2x ext{cos}^2 x = 1 - ext{sin}^2 x, we substitute for extcos2x ext{cos}^2 x:

5extsinx=1+2(1extsin2x)5 ext{sin} x = 1 + 2(1 - ext{sin}^2 x)

Expanding the right side yields:

5extsinx=1+22extsin2x5 ext{sin} x = 1 + 2 - 2 ext{sin}^2 x

This simplifies to:

5extsinx=32extsin2x5 ext{sin} x = 3 - 2 ext{sin}^2 x

Rearranging the equation gives:

2extsin2x+5extsinx3=02 ext{sin}^2 x + 5 ext{sin} x - 3 = 0

Thus, we have shown that the original equation can be expressed in the desired form.

Step 2

Solve, for 0 ≤ x < 360°, 2sin^2 x + 5sin x - 3 = 0

99%

104 rated

Answer

To solve the quadratic equation 2extsin2x+5extsinx3=02 ext{sin}^2 x + 5 ext{sin} x - 3 = 0, we can use the quadratic formula:

extsinx=b±b24ac2a ext{sin} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Where:

  • a=2a = 2
  • b=5b = 5
  • c=3c = -3

Calculating the discriminant:

b24ac=524(2)(3)=25+24=49b^2 - 4ac = 5^2 - 4(2)(-3) = 25 + 24 = 49

Now substituting into the quadratic formula:

extsinx=5±4922=5±74 ext{sin} x = \frac{-5 \pm \sqrt{49}}{2 \cdot 2} = \frac{-5 \pm 7}{4}

This results in two possible solutions:

  1. extsinx=24=12 ext{sin} x = \frac{2}{4} = \frac{1}{2}
  2. extsinx=124=3 ext{sin} x = \frac{-12}{4} = -3 (not possible as extsinx ext{sin} x must be in the range [-1, 1])

Thus, we only consider extsinx=12 ext{sin} x = \frac{1}{2}.

The angles for which extsinx=12 ext{sin} x = \frac{1}{2} in the interval [0°,360°)[0°, 360°) are:

  • x=30°x = 30°
  • x=150°x = 150°

Therefore, the solutions are:

  • x=30°x = 30°
  • x=150°x = 150°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;