Photo AI

Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1 - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 4

Question icon

Question 8

Using-sin²-θ-+-cos²-θ-=-1,-show-that-the-cosec²-θ---cot²-θ-=-1-Edexcel-A-Level Maths Pure-Question 8-2006-Paper 4.png

Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1. Hence, or otherwise, prove that cosec⁴ θ - cot⁴ θ = cosec² θ + cot² θ. Solve, for 90° < θ < 180°, c... show full transcript

Worked Solution & Example Answer:Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1 - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 4

Step 1

Using sin² θ + cos² θ = 1, show that the cosec² θ - cot² θ = 1.

96%

114 rated

Answer

We start with the identity:

extsin2θ+extcos2θ=1. ext{sin}^2 θ + ext{cos}^2 θ = 1.

Dividing the entire equation by sin² θ gives us:

rac{ ext{sin}^2 θ}{ ext{sin}^2 θ} + rac{ ext{cos}^2 θ}{ ext{sin}^2 θ} = rac{1}{ ext{sin}^2 θ}.

This simplifies to:

1 + rac{ ext{cos}^2 θ}{ ext{sin}^2 θ} = ext{cosec}^2 θ.

Now note that extcos2θextsin2θ=extcot2θ\frac{ ext{cos}^2 θ}{ ext{sin}^2 θ} = ext{cot}^2 θ, thus we have:

1+extcot2θ=extcosec2θ.1 + ext{cot}^2 θ = ext{cosec}^2 θ.

Rearranging gives us:

extcosec2θextcot2θ=1. ext{cosec}^2 θ - ext{cot}^2 θ = 1.

Step 2

Hence, or otherwise, prove that cosec⁴ θ - cot⁴ θ = cosec² θ + cot² θ.

99%

104 rated

Answer

To prove this, we start with the expression:

extcosec4θextcot4θ ext{cosec}^4 θ - ext{cot}^4 θ

This can be factored as a difference of squares:

extcosec2θ+extcot2θ ext{cosec}^2 θ + ext{cot}^2 θ

Multiplying by (cosec2θextcot2θ)\left(\text{cosec}^2 θ - ext{cot}^2 θ\right) gives us:

(cosec2θextcot2θ)(cosec2θ+cot2θ)=1(cosec2θ+cot2θ)\left(\text{cosec}^2 θ - ext{cot}^2 θ\right)\left(\text{cosec}^2 θ + \text{cot}^2 θ\right) = 1\left(\text{cosec}^2 θ + \text{cot}^2 θ\right)

Thus:

extcosec4θextcot4θ=extcosec2θ+extcot2θ ext{cosec}^4 θ - ext{cot}^4 θ = ext{cosec}^2 θ + ext{cot}^2 θ.

Step 3

Solve, for 90° < θ < 180°, cosec⁴ θ - cot⁴ θ = 2 - cot θ.

96%

101 rated

Answer

Starting with the equation:

cosec4θcot4θ=2cotθ,\text{cosec}^4 θ - \text{cot}^4 θ = 2 - \text{cot} θ,

we can use the previous result:

cosec4θcot4θ=cosec2θ+cot2θ.\text{cosec}^4 θ - \text{cot}^4 θ = \text{cosec}^2 θ + \text{cot}^2 θ.

Thus we have:

cosec2θ+cot2θ=2cotθ.\text{cosec}^2 θ + \text{cot}^2 θ = 2 - \text{cot} θ.

Rearranging gives:

cosec2θ+2cot2θ+cotθ2=0.\text{cosec}^2 θ + 2\text{cot}^2 θ + \text{cot} θ - 2 = 0.

Letting x=cotθx = \text{cot} θ, we have:

2x2+x1=0.2x^2 + x - 1 = 0.

Using the quadratic formula yields:

x=1±124(2)(1)2(2)=1±94=1±34.x = \frac{-1 \pm \sqrt{1^2 - 4(2)(-1)}}{2(2)} = \frac{-1 \pm \sqrt{9}}{4} = \frac{-1 \pm 3}{4}.

Thus:

  1. cotθ=12\text{cot} θ = \frac{1}{2} or
  2. cotθ=1.\text{cot} θ = -1.

Determining angles in the range 90° < θ < 180° gives:

  1. θ=135°θ = 135° for cotθ=1\text{cot} θ = -1.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;