Photo AI

The table below shows corresponding values of x and y for y = log_2 x The values of y are given to 2 decimal places as appropriate - Edexcel - A-Level Maths Pure - Question 7 - 2022 - Paper 2

Question icon

Question 7

The-table-below-shows-corresponding-values-of-x-and-y-for-y-=-log_2-x-The-values-of-y-are-given-to-2-decimal-places-as-appropriate-Edexcel-A-Level Maths Pure-Question 7-2022-Paper 2.png

The table below shows corresponding values of x and y for y = log_2 x The values of y are given to 2 decimal places as appropriate. x 3 4.5 6 7.5 9... show full transcript

Worked Solution & Example Answer:The table below shows corresponding values of x and y for y = log_2 x The values of y are given to 2 decimal places as appropriate - Edexcel - A-Level Maths Pure - Question 7 - 2022 - Paper 2

Step 1

Using the trapezium rule with all the values of y in the table, find an estimate for \( \int_3^9 log_2 2x \, dx \)

96%

114 rated

Answer

To estimate the integral using the trapezium rule, we apply the formula:

extArea=h2(y0+2y1+2y2+2y3+y4) ext{Area} = \frac{h}{2} \left( y_0 + 2y_1 + 2y_2 + 2y_3 + y_4 \right)

where:

  • ( h ) is the width of each sub-interval, equal to ( h = \frac{9 - 3}{4} = 1.5 )
  • The values from the table are as follows: 1.63, 2.26, 2.46, and 2.63.

Thus, the area approximation becomes:

extArea=1.52(1.63+2(2.26)+2(2.46)+2.63) ext{Area} = \frac{1.5}{2} \left( 1.63 + 2(2.26) + 2(2.46) + 2.63 \right)

Calculating the values gives:

=1.52(1.63+4.52+4.92+2.63)= \frac{1.5}{2} \left( 1.63 + 4.52 + 4.92 + 2.63 \right) =1.52(13.8)= \frac{1.5}{2} \left( 13.8 \right) =10.35.= 10.35.

Thus, the estimate for ( \int_3^9 log_2 2x , dx ) is approximately 10.35.

Step 2

Using your answer to part (a) and making your method clear, estimate \( \int_3^9 log_2 (2x)^{10} \, dx \)

99%

104 rated

Answer

Using the result from part (a), we can express the integral as:

39log2(2x)10dx=1039log22xdx.\int_3^9 log_2 (2x)^{10} \, dx = 10 \int_3^9 log_2 2x \, dx.

Using the earlier estimate for ( \int_3^9 log_2 2x , dx ), we find:

10×10.35=103.5.10 \times 10.35 = 103.5.

Thus, the estimate for ( \int_3^9 log_2 (2x)^{10} , dx ) is approximately 103.5.

Step 3

Using your answer to part (a) and making your method clear, estimate \( \int_3^9 log_2 18x \, dx \)

96%

101 rated

Answer

To estimate ( \int_3^9 log_2 18x , dx ), we can rewrite it as:

39log218+log2xdx.\int_3^9 log_2 18 + log_2 x \, dx.

This leads to:

39log218dx+39log2xdx.\int_3^9 log_2 18 \, dx + \int_3^9 log_2 x \, dx.

The first integral is:

log218×(93)=log218×6.log_2 18 \times (9 - 3) = log_2 18 \times 6.

Calculating this gives:

6×4.1699=25.0194(using log2184.1699).6 \times 4.1699 = 25.0194 \\ \text{(using } log_2 18 \approx 4.1699 \text{)}.

Next, for ( \int_3^9 log_2 x , dx ), we again use the trapezium rule as in part (a) with values:

  • ( y = 1.63, 2.26, 2.46, 2.63 )

The estimate will be the same as before, yielding 10.35. Hence, we have:

25.02+10.35=35.37.25.02 + 10.35 = 35.37.

Thus, the estimate for ( \int_3^9 log_2 18x , dx ) is approximately 35.37.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;