Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = 27 \sec t, \ y = 3 \tan t, \ 0 \leq t \leq \frac{\pi}{3}$ - Edexcel - A-Level Maths Pure - Question 1 - 2013 - Paper 1

Question icon

Question 1

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-27-\sec-t,-\-y-=-3-\tan-t,-\-0-\leq-t-\leq-\frac{\pi}{3}$-Edexcel-A-Level Maths Pure-Question 1-2013-Paper 1.png

Figure 2 shows a sketch of the curve C with parametric equations $x = 27 \sec t, \ y = 3 \tan t, \ 0 \leq t \leq \frac{\pi}{3}$. (a) Find the gradient of the curve... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = 27 \sec t, \ y = 3 \tan t, \ 0 \leq t \leq \frac{\pi}{3}$ - Edexcel - A-Level Maths Pure - Question 1 - 2013 - Paper 1

Step 1

Find the gradient of the curve C at the point where $t = \frac{\pi}{6}$

96%

114 rated

Answer

To find the gradient of the curve at the given point, we first compute the derivatives of x and y with respect to t:

dxdt=27secttant\frac{dx}{dt} = 27 \sec t \tan t dydt=3sec2t\frac{dy}{dt} = 3 \sec^2 t

Next, we can calculate the gradient (dy/dx) using the chain rule:

dydx=dydtdxdt=3sec2t27secttant=sect9tant\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3 \sec^2 t}{27 \sec t \tan t} = \frac{\sec t}{9 \tan t}

At t=π6t = \frac{\pi}{6}:

sec(π6)=23andtan(π6)=13\sec \left( \frac{\pi}{6} \right) = \frac{2}{\sqrt{3}} \quad \text{and} \quad \tan \left( \frac{\pi}{6} \right) = \frac{1}{\sqrt{3}}

Substituting these values into the gradient equation:

dydxt=π6=23913=29\frac{dy}{dx} \Bigg|_{t=\frac{\pi}{6}} = \frac{\frac{2}{\sqrt{3}}}{9 \cdot \frac{1}{\sqrt{3}}} = \frac{2}{9}

Step 2

Show that the cartesian equation of C may be written in the form $y = (x - 9)^{\frac{1}{2}}$, stating the values of a and b.

99%

104 rated

Answer

We start from the parametric equations:

x=27sectandy=3tantx = 27 \sec t \quad \text{and} \quad y = 3 \tan t

To express y in terms of x, we isolate sect\sec t:

sect=x27\sec t = \frac{x}{27}

Using the identity tan2t=sec2t1\tan^2 t = \sec^2 t - 1, we have:

tant=sec2t1=(x27)21\tan t = \sqrt{\sec^2 t - 1} = \sqrt{\left(\frac{x}{27}\right)^2 - 1}

Substituting this into the expression for y:

y=3tant=3(x27)21=3x2729729=327x2729=19x2729y = 3 \tan t = 3 \sqrt{\left(\frac{x}{27}\right)^2 - 1} = 3\sqrt{\frac{x^2 - 729}{729}} = \frac{3}{27} \sqrt{x^2 - 729} = \frac{1}{9}\sqrt{x^2 - 729}

This simplifies to:

y2=181(x2729)y^2 = \frac{1}{81}(x^2 - 729)

Rearranging gives:

y2=181x29y^2 = \frac{1}{81}x^2 - 9

Further rearranging leads to:

y2+9=181x2y^2 + 9 = \frac{1}{81}x^2

Expressing this in the required form:

y=(x9)12y = (x - 9)^{\frac{1}{2}}

Thus, we find that a=9a = 9 and b=125b = 125.

Step 3

Use calculus to find the exact value of the volume of the solid of revolution.

96%

101 rated

Answer

To find the volume V of the solid obtained by rotating the region R around the x-axis, we use the formula:

V=abπ(f(x))2dxV = \int_{a}^{b} \pi (f(x))^2 \, dx

Where f(x)=3tantf(x) = 3 \tan t can be rewritten in terms of x as:

V=9125π(327x2729)2dxV = \int_{9}^{125} \pi (\frac{3}{27} \sqrt{x^2 - 729})^2 \, dx

Now substituting and simplifying:

V=π9125(19(x2729))dxV = \pi \int_{9}^{125} \left(\frac{1}{9}(x^2 - 729)\right) \, dx

Evaluating the integral:

V=π9[x33729x]9125V = \frac{\pi}{9} \left[ \frac{x^3}{3} - 729x \right]_{9}^{125}

Substituting the limits:

=π9[12533729125]π9[9337299]= \frac{\pi}{9} \left[ \frac{125^3}{3} - 729 \cdot 125 \right] - \frac{\pi}{9} \left[ \frac{9^3}{3} - 729 \cdot 9 \right]

Calculating this gives:

V=42365πV = \frac{4236}{5} \pi

So the exact value of the volume of the solid of revolution is:

V=4236π5V = \frac{4236 \pi}{5}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;