Photo AI

The curve shown in Figure 3 has parametric equations $x = t - 4 \, ext{sin} \, t, \quad y = 1 - 2 \, ext{cos} \, t, \quad \frac{2\, ext{π}}{3} \leq t \leq \frac{2\text{π}}{3}$ The point $A$, with coordinates $(k, 1)$, lies on the curve - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 9

Question icon

Question 2

The-curve-shown-in-Figure-3-has-parametric-equations--$x-=-t---4-\,--ext{sin}-\,-t,-\quad-y-=-1---2-\,--ext{cos}-\,-t,-\quad-\frac{2\,-ext{π}}{3}-\leq-t-\leq-\frac{2\text{π}}{3}$--The-point-$A$,-with-coordinates-$(k,-1)$,-lies-on-the-curve-Edexcel-A-Level Maths Pure-Question 2-2013-Paper 9.png

The curve shown in Figure 3 has parametric equations $x = t - 4 \, ext{sin} \, t, \quad y = 1 - 2 \, ext{cos} \, t, \quad \frac{2\, ext{π}}{3} \leq t \leq \frac{2... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 3 has parametric equations $x = t - 4 \, ext{sin} \, t, \quad y = 1 - 2 \, ext{cos} \, t, \quad \frac{2\, ext{π}}{3} \leq t \leq \frac{2\text{π}}{3}$ The point $A$, with coordinates $(k, 1)$, lies on the curve - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 9

Step 1

a) find the exact value of k

96%

114 rated

Answer

Since the point A(k,1)A(k, 1) lies on the curve, we need to set y=1y = 1 in the parametric equation for yy:

1=12cost1 = 1 - 2 \, \text{cos} \, t
This simplifies to:

2cost=02 \, \text{cos} \, t = 0
So,

cost=0\text{cos} \, t = 0
This occurs when

t=π2+nπ,  nZt = \frac{\text{π}}{2} + n\text{π}, \; n \in \mathbb{Z}
Given the range 2π3t2π3{\frac{2\text{π}}{3} \leq t \leq \frac{2\text{π}}{3}}, the valid solution for tt is:

t=3π2t = \frac{3\text{π}}{2}
Next, we find the xx-coordinate using the equation for xx:

k=t4sin(3π2)k = t - 4 \text{sin} \left( \frac{3\text{π}}{2} \right)
Since sin(3π2)=1\text{sin} \left( \frac{3\text{π}}{2} \right) = -1:

k=3π24(1)=3π2+4=3π2+82=3π+82k = \frac{3\text{π}}{2} - 4(-1) = \frac{3\text{π}}{2} + 4 = \frac{3\text{π}}{2} + \frac{8}{2} = \frac{3\text{π} + 8}{2}
Thus, the exact value of kk is:

k=3π+82k = \frac{3\text{π} + 8}{2}

Step 2

b) find the gradient of the curve at the point A

99%

104 rated

Answer

To find the gradient at the point A(k,1)A(k, 1), we need to calculate rac{dy}{dx} using the parametric equations. First, we find rac{dx}{dt} and rac{dy}{dt}:

dxdt=14cost\frac{dx}{dt} = 1 - 4\text{cos} \, t
dydt=2sint\frac{dy}{dt} = 2 \text{sin} \, t
Now we calculate rac{dy}{dx}:

dydx=dy/dtdx/dt=2sint14cost\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2\text{sin} \, t}{1 - 4\text{cos} \, t}
Substituting t=3π2t = \frac{3\text{π}}{2}:

dydx=2sin(3π2)14cos(3π2)\frac{dy}{dx} = \frac{2\text{sin} \left( \frac{3\text{π}}{2} \right)}{1 - 4\text{cos} \left( \frac{3\text{π}}{2} \right)}
We know that: sin(3π2)=1 and cos(3π2)=0\text{sin} \left( \frac{3\text{π}}{2} \right) = -1 \text{ and } \text{cos} \left( \frac{3\text{π}}{2} \right) = 0
Hence,

dydx=2(1)14(0)=21=2\frac{dy}{dx} = \frac{2(-1)}{1 - 4(0)} = \frac{-2}{1} = -2
Therefore, the gradient of the curve at point AA is:

dydx=2\frac{dy}{dx} = -2

Step 3

c) Find the value of t at this point, showing each step in your working and giving your answer to 4 decimal places

96%

101 rated

Answer

To find where the gradient is 12-\frac{1}{2}, we set:

dydx=12\frac{dy}{dx} = -\frac{1}{2}
Thus,

2sint14cost=12\frac{2\text{sin} \, t}{1 - 4\text{cos} \, t} = -\frac{1}{2}
Cross-multiplying gives:

4sint=(14cost)4\text{sin} \, t = - (1 - 4\text{cos} \, t)
This simplifies to:

4sint+14cost=04\text{sin} \, t + 1 - 4\text{cos} \, t = 0
Rearranging yields:

4sint4cost+1=04\text{sin} \, t - 4\text{cos} \, t + 1 = 0
This can be rewritten as:

sintcost=14\text{sin} \, t - \text{cos} \, t = -\frac{1}{4}
Using the identity:

tant=sintcost\text{tan} \, t = \frac{\text{sin} \, t}{\text{cos} \, t}
is a useful approach, leading to:

sint=14cost\text{sin} \, t = -\frac{1}{4}\text{cos} \, t
Then substituting into the Pythagorean identity gives:

(14cost)2+cos2t=1\left(-\frac{1}{4}\text{cos} \, t\right)^2 + \text{cos}^2 \, t = 1
Expanding and solving:

116cos2t+cos2t=11716cos2t=1\frac{1}{16}\text{cos}^2 \, t + \text{cos}^2 \, t = 1 \Rightarrow \frac{17}{16}\text{cos}^2 \, t = 1
Thus:

cos2t=1617cost=±1617=±417\text{cos}^2 \, t = \frac{16}{17} \Rightarrow \text{cos} \, t = \pm \sqrt{\frac{16}{17}} = \pm\frac{4}{\sqrt{17}}
Substituting back to find extsint ext{sin} \, t gives:

If cost=417\text{cos} \, t = \frac{4}{\sqrt{17}}, then:

sint=14417=117\text{sin} \, t = -\frac{1}{4} \cdot \frac{4}{\sqrt{17}} = -\frac{1}{\sqrt{17}}
Using the values we can find the angles:

t=tan1(117417)=tan1(14)t = \text{tan}^{-1}\left( \frac{-\frac{1}{\sqrt{17}}}{\frac{4}{\sqrt{17}}} \right) = \text{tan}^{-1}\left(-\frac{1}{4}\right)
By evaluating we find the angle in radians, leading to:

t0.2448  radians (to 4 decimal places)t \approx 0.2448 \; \text{radians (to 4 decimal places)}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;