Photo AI

Complete the table below, giving the values of y to 2 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 2

Question icon

Question 5

Complete-the-table-below,-giving-the-values-of-y-to-2-decimal-places-Edexcel-A-Level Maths Pure-Question 5-2009-Paper 2.png

Complete the table below, giving the values of y to 2 decimal places. | x | 1 | 1.4 | 1.8 | 2.2 | 2.6 | 3 | |---|---|-----|-----|-----|-----|---| | y | 3 | | ... show full transcript

Worked Solution & Example Answer:Complete the table below, giving the values of y to 2 decimal places - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 2

Step 1

Complete the table below, giving the values of y to 2 decimal places.

96%

114 rated

Answer

To find the values of y, we will substitute each value of x into the equation ( y = \sqrt{10x - x^2} ).

  1. For ( x = 1 ):
    [ y = \sqrt{10(1) - (1)^2} = \sqrt{9} = 3.00 ]

  2. For ( x = 1.4 ):
    [ y = \sqrt{10(1.4) - (1.4)^2} = \sqrt{14 - 1.96} = \sqrt{12.04} \approx 3.47 ]
    (rounded to 2 decimal places)

  3. For ( x = 1.8 ):
    [ y = \sqrt{10(1.8) - (1.8)^2} = \sqrt{18 - 3.24} = \sqrt{14.76} \approx 3.84 ]
    (rounded to 2 decimal places)

  4. For ( x = 2.2 ):
    [ y = \sqrt{10(2.2) - (2.2)^2} = \sqrt{22 - 4.84} = \sqrt{17.16} \approx 4.14 ]
    (rounded to 2 decimal places)

  5. For ( x = 2.6 ):
    [ y = \sqrt{10(2.6) - (2.6)^2} = \sqrt{26 - 6.76} = \sqrt{19.24} \approx 4.39 ]
    (rounded to 2 decimal places)

  6. For ( x = 3 ):
    [ y = \sqrt{10(3) - (3)^2} = \sqrt{30 - 9} = \sqrt{21} \approx 4.58 ]
    (rounded to 2 decimal places)

Thus, the completed table is:

x11.41.82.22.63
y3.003.473.844.144.394.58

Step 2

Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of \int_1^3 \sqrt{(10x - x^2)} \, dx.

99%

104 rated

Answer

To apply the trapezium rule, we use the formula:

extAreah2×(y0+2y1+2y2+2y3+2y4+y5) ext{Area} \approx \frac{h}{2} \times (y_0 + 2y_1 + 2y_2 + 2y_3 + 2y_4 + y_5)

Where:

  • ( h ) is the width of each interval, and
  • ( y_i ) are the calculated values of y at each x.
  1. Determine the width of each interval: [ h = \frac{b - a}{n} = \frac{3 - 1}{5} = 0.4 ]
    (since n = 5 intervals from 1 to 3)

  2. Substitute the y values: [ y_0 = 3.00, \quad y_1 = 3.47, \quad y_2 = 3.84, \quad y_3 = 4.14, \quad y_4 = 4.39, \quad y_5 = 4.58 ]

  3. Calculate: [ ext{Area} \approx \frac{0.4}{2} \times (3.00 + 2 \times 3.47 + 2 \times 3.84 + 2 \times 4.14 + 2 \times 4.39 + 4.58) ]

    = [ 0.2 \times (3.00 + 6.94 + 7.68 + 8.28 + 8.78 + 4.58) ] = [ 0.2 \times 39.26 = 7.852 ]

Thus, the approximation for ( \int_1^3 \sqrt{(10x - x^2)} , dx ) is approximately ( 7.85 ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;