Photo AI

Use the substitution $u = 2^x$ to find the exact value of $$\int_0^1 \frac{2^x}{(2^x + 1)^2} \, dx.$$ - Edexcel - A-Level Maths Pure - Question 3 - 2007 - Paper 8

Question icon

Question 3

Use-the-substitution-$u-=-2^x$-to-find-the-exact-value-of--$$\int_0^1-\frac{2^x}{(2^x-+-1)^2}-\,-dx.$$--Edexcel-A-Level Maths Pure-Question 3-2007-Paper 8.png

Use the substitution $u = 2^x$ to find the exact value of $$\int_0^1 \frac{2^x}{(2^x + 1)^2} \, dx.$$

Worked Solution & Example Answer:Use the substitution $u = 2^x$ to find the exact value of $$\int_0^1 \frac{2^x}{(2^x + 1)^2} \, dx.$$ - Edexcel - A-Level Maths Pure - Question 3 - 2007 - Paper 8

Step 1

Substitution of $u = 2^x$

96%

114 rated

Answer

To begin with, we apply the substitution u=2xu = 2^x. The derivative can be calculated as: dudx=2xln(2)dx=du2xln(2)=duuln(2).\frac{du}{dx} = 2^x \ln(2) \Rightarrow dx = \frac{du}{2^x \ln(2)} = \frac{du}{u \ln(2)}.

When x=0x = 0, u=1u = 1, and when x=1x = 1, u=2u = 2. Thus, we can now rewrite the integral as:

122log2(u)(u+1)2duuln(2).\int_1^2 \frac{2^{\log_2(u)}}{(u + 1)^2} \cdot \frac{du}{u \ln(2)}.

Step 2

Change of Limits

99%

104 rated

Answer

After substituting, the integral becomes:

12u(u+1)2duuln(2)=1ln(2)121(u+1)2du.\int_1^2 \frac{u}{(u + 1)^2} \cdot \frac{du}{u \ln(2)} = \frac{1}{\ln(2)} \int_1^2 \frac{1}{(u + 1)^2} \, du.

Step 3

Integration and Result

96%

101 rated

Answer

Next, we compute the integral:

1(u+1)2du=1u+1+C.\int \frac{1}{(u + 1)^2} \, du = -\frac{1}{u + 1} + C.

Evaluating this from u=1u=1 to u=2u=2 gives:

[1u+1]12=13(12)=13+12=16.\left[-\frac{1}{u + 1}\right]_1^2 = -\frac{1}{3} - (-\frac{1}{2}) = -\frac{1}{3} + \frac{1}{2} = \frac{1}{6}.

Therefore, the integral yields:

1ln(2)16=16ln(2).\frac{1}{\ln(2)} \cdot \frac{1}{6} = \frac{1}{6\ln(2)}.

Step 4

Exact Value

98%

120 rated

Answer

Combining these results, the exact value of the integral is:

16ln(2).\frac{1}{6 \ln(2)}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;