Get detailed information about SimpleStudy's offerings for schools.
We can give expert advice on our plans and what will be the best option for your school.
Photo AI
Question 3
Use the substitution $u = 2^x$ to find the exact value of $$\int_0^1 \frac{2^x}{(2^x + 1)^2} \, dx.$$
Step 1
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To begin with, we apply the substitution u=2xu = 2^xu=2x. The derivative can be calculated as: dudx=2xln(2)⇒dx=du2xln(2)=duuln(2).\frac{du}{dx} = 2^x \ln(2) \Rightarrow dx = \frac{du}{2^x \ln(2)} = \frac{du}{u \ln(2)}.dxdu=2xln(2)⇒dx=2xln(2)du=uln(2)du.
When x=0x = 0x=0, u=1u = 1u=1, and when x=1x = 1x=1, u=2u = 2u=2. Thus, we can now rewrite the integral as:
∫122log2(u)(u+1)2⋅duuln(2).\int_1^2 \frac{2^{\log_2(u)}}{(u + 1)^2} \cdot \frac{du}{u \ln(2)}.∫12(u+1)22log2(u)⋅uln(2)du.
Step 2
99%
104 rated
After substituting, the integral becomes:
∫12u(u+1)2⋅duuln(2)=1ln(2)∫121(u+1)2 du.\int_1^2 \frac{u}{(u + 1)^2} \cdot \frac{du}{u \ln(2)} = \frac{1}{\ln(2)} \int_1^2 \frac{1}{(u + 1)^2} \, du.∫12(u+1)2u⋅uln(2)du=ln(2)1∫12(u+1)21du.
Step 3
101 rated
Next, we compute the integral:
∫1(u+1)2 du=−1u+1+C.\int \frac{1}{(u + 1)^2} \, du = -\frac{1}{u + 1} + C.∫(u+1)21du=−u+11+C.
Evaluating this from u=1u=1u=1 to u=2u=2u=2 gives:
[−1u+1]12=−13−(−12)=−13+12=16.\left[-\frac{1}{u + 1}\right]_1^2 = -\frac{1}{3} - (-\frac{1}{2}) = -\frac{1}{3} + \frac{1}{2} = \frac{1}{6}.[−u+11]12=−31−(−21)=−31+21=61.
Therefore, the integral yields:
1ln(2)⋅16=16ln(2).\frac{1}{\ln(2)} \cdot \frac{1}{6} = \frac{1}{6\ln(2)}.ln(2)1⋅61=6ln(2)1.
Step 4
98%
120 rated
Combining these results, the exact value of the integral is:
16ln(2).\frac{1}{6 \ln(2)}.6ln(2)1.
Report Improved Results
Recommend to friends
Students Supported
Questions answered