Photo AI

6. (a) (i) By writing $3\theta = (2\theta + \phi)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 6 - 2009 - Paper 2

Question icon

Question 6

6.-(a)-(i)-By-writing-$3\theta-=-(2\theta-+-\phi)$,-show-that-$$\sin-3\theta-=-3-\sin-\theta---4-\sin^3-\theta.$$----(ii)-Hence,-or-otherwise,-for-$0-<-\theta-<-\frac{\pi}{3}$,-solve-$$8-\sin^3-\theta---6-\sin-\theta-+-1-=-0.$$----Give-your-answers-in-terms-of-$\pi$-Edexcel-A-Level Maths Pure-Question 6-2009-Paper 2.png

6. (a) (i) By writing $3\theta = (2\theta + \phi)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \fr... show full transcript

Worked Solution & Example Answer:6. (a) (i) By writing $3\theta = (2\theta + \phi)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 6 - 2009 - Paper 2

Step 1

By writing $3\theta = (2\theta + \phi)$, show that \(\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta\)

96%

114 rated

Answer

To demonstrate that sin3θ=sin(2θ+ϕ),\sin 3\theta = \sin(2\theta + \phi), we can use the sine addition formula: sin(a+b)=sinacosb+cosasinb.\sin(a + b) = \sin a \cos b + \cos a \sin b.
Letting a=2θa = 2\theta and b=ϕb = \phi, we can substitute these values to find:

sin3θ=sin(2θ)cos(ϕ)+cos(2θ)sin(ϕ).\sin 3\theta = \sin(2\theta) \cos(\phi) + \cos(2\theta) \sin(\phi).

Using the double angle formulas, we have: sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta and cos(2θ)=12sin2θ.\cos(2\theta) = 1 - 2 \sin^2 \theta.

Substituting these into the equation gives: sin3θ=(2sinθcosθ)cos(ϕ)+(12sin2θ)sin(ϕ).\sin 3\theta = (2 \sin \theta \cos \theta) \cos(\phi) + (1 - 2 \sin^2 \theta) \sin(\phi).

If we take ϕ=θ\phi = \theta, we know:

  • cos(ϕ)=cosθ\cos(\phi) = \cos \theta
  • sin(ϕ)=sinθ\sin(\phi) = \sin \theta

Thus, the equation simplifies to: sin3θ=2sinθcosθcosθ+(12sin2θ)sinθ.\sin 3\theta = 2 \sin \theta \cos \theta \cos \theta + (1 - 2 \sin^2 \theta) \sin \theta.

After simplification, we arrive at: sin3θ=3sinθ4sin3θ.\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.

Step 2

Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $8 \sin^3 \theta - 6 \sin \theta + 1 = 0$.

99%

104 rated

Answer

Let's denote x=sinθx = \sin \theta. Then the original equation becomes: 8x36x+1=0.8x^3 - 6x + 1 = 0.
We can rearrange this equation: 8x36x=1.8x^3 - 6x = -1.
To solve this cubic equation, we can apply the Rational Root Theorem: Testing for rational roots, we find:

  • When x=12,x = \frac{1}{2}, 8(12)36(12)+1=0.8\left(\frac{1}{2}\right)^3 - 6\left(\frac{1}{2}\right) + 1 = 0.
    Thus, x=12x = \frac{1}{2} is a root. We can factor the polynomial as: 8x36x+1=(x12)(8x2+2x2).8x^3 - 6x + 1 = (x - \frac{1}{2})(8x^2 + 2x - 2).

Next, we need to solve the quadratic: 8x2+2x2=0.8x^2 + 2x - 2 = 0.
Using the quadratic formula: x=b±b24ac2a=2±224(8)(2)2(8)=2±4+6416=2±6816=2±21716=1±178.x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{2^2 - 4(8)(-2)}}{2(8)} = \frac{-2 \pm \sqrt{4 + 64}}{16} = \frac{-2 \pm \sqrt{68}}{16} = \frac{-2 \pm 2\sqrt{17}}{16} = \frac{-1 \pm \sqrt{17}}{8}.

We find:

  1. x=12x = \frac{1}{2}
  2. x=1+178x = \frac{-1 + \sqrt{17}}{8} (valid in the range).

Since sinθ=x\sin \theta = x, we have:

  1. θ=π6\theta = \frac{\pi}{6} for x=12x = \frac{1}{2}.
  2. For the second value, use the arcsine function to find the corresponding angle in the specified range.

Step 3

Using $\sin(\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha$, or otherwise, show that $\sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$

96%

101 rated

Answer

Let's express sin15\sin 15^\circ using the formula for the sine of a difference: sin(15)=sin(4530)=sin45cos30cos45sin30.\sin(15^\circ) = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ.

Using known values:

  • sin45=22,\sin 45^\circ = \frac{\sqrt{2}}{2},
  • cos30=32,\cos 30^\circ = \frac{\sqrt{3}}{2},
  • cos45=22,\cos 45^\circ = \frac{\sqrt{2}}{2}, and
  • sin30=12\sin 30^\circ = \frac{1}{2}, we substitute these values into the equation:

sin(15)=(22)(32)(22)(12)=6424=14(62).\sin(15^\circ) = \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{1}{4}(\sqrt{6} - \sqrt{2}).

This completes the proof.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;