8. (a) Prove that
\[ sec \ 2A + tan \ 2A = \frac{cos \ A + sin \ A}{cos \ A - sin \ A} \]
\[ A \neq \frac{(2n + 1) \pi}{4}, \ n \in \mathbb{Z} \]
(b) Hence solve, for $0 \leq \theta < 2\pi$,
\[ sec \ 2\theta + tan \ 2\theta = \frac{1}{2} \]
Give your answers to 3 decimal places. - Edexcel - A-Level Maths Pure - Question 1 - 2015 - Paper 3
Question 1
8. (a) Prove that
\[ sec \ 2A + tan \ 2A = \frac{cos \ A + sin \ A}{cos \ A - sin \ A} \]
\[ A \neq \frac{(2n + 1) \pi}{4}, \ n \in \mathbb{Z} \]
(b) Hence sol... show full transcript
Worked Solution & Example Answer:8. (a) Prove that
\[ sec \ 2A + tan \ 2A = \frac{cos \ A + sin \ A}{cos \ A - sin \ A} \]
\[ A \neq \frac{(2n + 1) \pi}{4}, \ n \in \mathbb{Z} \]
(b) Hence solve, for $0 \leq \theta < 2\pi$,
\[ sec \ 2\theta + tan \ 2\theta = \frac{1}{2} \]
Give your answers to 3 decimal places. - Edexcel - A-Level Maths Pure - Question 1 - 2015 - Paper 3
Step 1
Prove that sec 2A + tan 2A = \frac{cos A + sin A}{cos A - sin A}
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
So the final answers to the equation are:\n[ \theta \approx 2.820 , (3 , \text{decimal places}), , 5.961 , (3 , \text{decimal places}) ]