Photo AI

The curve C has the equation $$ ext{cos }2x + ext{cos }3y = 1, $$ $$ - rac{ ext{pi}}{4} ext{ }< ext{x} < rac{ ext{pi}}{4} ext{ and } 0 < ext{y} < rac{ ext{pi}}{6} - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 7

Question icon

Question 5

The-curve-C-has-the-equation--$$--ext{cos-}2x-+--ext{cos-}3y-=-1,-$$--$$---rac{-ext{pi}}{4}--ext{-}<--ext{x}-<--rac{-ext{pi}}{4}--ext{-and-}-0-<--ext{y}-<--rac{-ext{pi}}{6}-Edexcel-A-Level Maths Pure-Question 5-2010-Paper 7.png

The curve C has the equation $$ ext{cos }2x + ext{cos }3y = 1, $$ $$ - rac{ ext{pi}}{4} ext{ }< ext{x} < rac{ ext{pi}}{4} ext{ and } 0 < ext{y} < rac{ ext{... show full transcript

Worked Solution & Example Answer:The curve C has the equation $$ ext{cos }2x + ext{cos }3y = 1, $$ $$ - rac{ ext{pi}}{4} ext{ }< ext{x} < rac{ ext{pi}}{4} ext{ and } 0 < ext{y} < rac{ ext{pi}}{6} - Edexcel - A-Level Maths Pure - Question 5 - 2010 - Paper 7

Step 1

Find \( \frac{dy}{dx} \) in terms of x and y.

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we differentiate the given equation ( \text{cos }2x + \text{cos }3y = 1 ) implicitly.

Differentiating both sides gives:

2sin2x+(3sin3y)dydx=0.-2\sin 2x + (-3\sin 3y)\frac{dy}{dx} = 0.

Rearranging this equation for ( \frac{dy}{dx} ):

dydx=2sin2x3sin3y.\frac{dy}{dx} = \frac{2\sin 2x}{3\sin 3y}.

This is the required expression for ( \frac{dy}{dx} ).

Step 2

Find the value of y at P.

99%

104 rated

Answer

Substituting ( x = \frac{\text{pi}}{6} ) into the curve equation:

cos (2×pi6)+cos 3y=1.\text{cos }\left(2 \times \frac{\text{pi}}{6}\right) + \text{cos }3y = 1.

This simplifies to:

cos (pi3)+cos 3y=1,\text{cos }\left(\frac{\text{pi}}{3}\right) + \text{cos }3y = 1,

which gives:

12+cos 3y=1.\frac{1}{2} + \text{cos }3y = 1.

Thus:

cos 3y=12.\text{cos }3y = \frac{1}{2}.

Therefore:

3y=pi3extor3y=5pi3.3y = \frac{\text{pi}}{3} ext{ or } 3y = \frac{5\text{pi}}{3}.

This leads to:

y=pi9extory=5pi9.y = \frac{\text{pi}}{9} ext{ or } y = \frac{5\text{pi}}{9}.

Since ( y < \frac{\text{pi}}{6} ), we select ( y = \frac{\text{pi}}{9}. )

Step 3

Find the equation of the tangent to C at P.

96%

101 rated

Answer

From part (a), we have:

dydx=2sin(pi3)3sin(3×pi9).\frac{dy}{dx} = \frac{2\sin(\frac{\text{pi}}{3})}{3\sin(3 \times \frac{\text{pi}}{9})}.

Calculating these values:

sin(pi3)=32,sin(pi3)=32.\sin(\frac{\text{pi}}{3}) = \frac{\sqrt{3}}{2}, \quad \sin(\frac{\text{pi}}{3}) = \frac{\sqrt{3}}{2}.

Thus:

dydx=232332=23.\frac{dy}{dx} = \frac{2 \cdot \frac{\sqrt{3}}{2}}{3 \cdot \frac{\sqrt{3}}{2}} = \frac{2}{3}.

The point P has coordinates ( \left( \frac{\text{pi}}{6}, \frac{\text{pi}}{9} \right) ). Using the point-slope form of the equation of the line:

(yy1)=m(xx1),(y - y_1) = m(x - x_1),

where ( m = \frac{2}{3} ):

(ypi9)=23(xpi6).\left( y - \frac{\text{pi}}{9} \right) = \frac{2}{3} \left( x - \frac{\text{pi}}{6} \right).

Clearing the fractions and rearranging gives:

6y2pi=4xpi,6y - 2\text{pi} = 4x - \text{pi},

which can be expressed as:

4x6y+2pi=0.4x - 6y + 2\text{pi} = 0.

Thus, the final form is:

4x - 6y + 2\text{pi} = 0 \text{, where } a = 4, b = -6, c = 2.\

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;