Photo AI

Relative to a fixed origin O, the point A has position vector i – 3j + 2k and the point B has position vector –2i + 2j - k - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 6

Question icon

Question 3

Relative-to-a-fixed-origin-O,-the-point-A-has-position-vector-i-–-3j-+-2k-and-the-point-B-has-position-vector-–2i-+-2j---k-Edexcel-A-Level Maths Pure-Question 3-2011-Paper 6.png

Relative to a fixed origin O, the point A has position vector i – 3j + 2k and the point B has position vector –2i + 2j - k. The points A and B lie on a straight line... show full transcript

Worked Solution & Example Answer:Relative to a fixed origin O, the point A has position vector i – 3j + 2k and the point B has position vector –2i + 2j - k - Edexcel - A-Level Maths Pure - Question 3 - 2011 - Paper 6

Step 1

Find \( \overrightarrow{AB} \)

96%

114 rated

Answer

To find the vector ( \overrightarrow{AB} ), we subtract the position vector of point A from that of point B:

AB=BA=(2i+2jk)(i3j+2k)\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = (-2i + 2j - k) - (i - 3j + 2k)

This simplifies to:

AB=(21)i+(2+3)j+(12)k=3i+5j3k.\overrightarrow{AB} = (-2 - 1)i + (2 + 3)j + (-1 - 2)k = -3i + 5j - 3k.

Step 2

Find a vector equation of l

99%

104 rated

Answer

The vector equation of the line l can be expressed in parametric form. Using point A and the direction vector ( \overrightarrow{AB} ):

Let the position vector ( \overrightarrow{r} ) vary along the line as follows:

r=A+tAB,\overrightarrow{r} = \overrightarrow{A} + t \overrightarrow{AB},

where ( t ) is a scalar parameter. Therefore:

r=(i3j+2k)+t(3i+5j3k)r=(13t)i+(3+5t)j+(23t)k.\overrightarrow{r} = (i - 3j + 2k) + t(-3i + 5j - 3k) \Rightarrow \overrightarrow{r} = (1 - 3t)i + (-3 + 5t)j + (2 - 3t)k.

Step 3

the value of p

96%

101 rated

Answer

Given that AC is perpendicular to l, we can use the scalar product. Let ( \overrightarrow{AC} = \overrightarrow{C} - \overrightarrow{A} = (2i + pj - 4k) - (i - 3j + 2k) = (1 + p)j - 6k. )

Since ( \overrightarrow{AC} \cdot \overrightarrow{AB} = 0 ), we compute:

ACAB=(13)(1+p)+5(0)+(6)(3)=0.\overrightarrow{AC} \cdot \overrightarrow{AB} = (1 - 3)(1 + p) + 5(0) + (-6)(-3) = 0.

Expanding this gives:

3(1+p)+18=033p+18=03p=15p=6.-3(1 + p) + 18 = 0 \Rightarrow -3 - 3p + 18 = 0 \Rightarrow 3p = 15 \Rightarrow p = -6.

Step 4

the distance AC

98%

120 rated

Answer

To find the distance ( AC ), we first find the position vector for point C:

C=2i6j4k.\overrightarrow{C} = 2i - 6j - 4k.

Next, compute ( \overrightarrow{AC} ):

AC=(2i6j4k)(i3j+2k)=(1)i+(3)j+(6)k.\overrightarrow{AC} = (2i - 6j - 4k) - (i - 3j + 2k) = (1)i + (-3)j + (-6)k.

The distance is given by the magnitude of ( \overrightarrow{AC} ):

AC=(1)2+(3)2+(6)2=1+9+36=46.|\overrightarrow{AC}| = \sqrt{(1)^2 + (-3)^2 + (-6)^2} = \sqrt{1 + 9 + 36} = \sqrt{46}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;