SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home A-Level Edexcel Maths Pure Differential Equations Given the function:
$$f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$$
(a) Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$
(b) Hence, using calculus, find the exact value of \( \int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta \$.
Given the function:
$$f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$$
(a) Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$
(b) Hence, using calculus, find the exact value of \( \int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta \$. - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 6 Question 8
View full question Given the function:
$$f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$$
(a) Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$
(b) Hence, using calculus, ... show full transcript
View marking scheme Worked Solution & Example Answer:Given the function:
$$f(\theta) = 4\cos^2 \theta - 3\sin^2 \theta$$
(a) Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta.$
(b) Hence, using calculus, find the exact value of \( \int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta \$. - Edexcel - A-Level Maths Pure - Question 8 - 2010 - Paper 6
Show that $f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To show that the equation holds, we can start by expressing cos 2 θ \cos^2 \theta cos 2 θ and sin 2 θ \sin^2 \theta sin 2 θ in terms of cos 2 θ \cos 2\theta cos 2 θ :
Use the identites:
cos 2 θ = 1 + cos 2 θ 2 \cos^2 \theta = \frac{1 + \cos 2\theta}{2} cos 2 θ = 2 1 + c o s 2 θ
sin 2 θ = 1 − cos 2 θ 2 \sin^2 \theta = \frac{1 - \cos 2\theta}{2} sin 2 θ = 2 1 − c o s 2 θ
Substitute these identities into the function:
f ( θ ) = 4 ( 1 + cos 2 θ 2 ) − 3 ( 1 − cos 2 θ 2 ) f(\theta) = 4\left(\frac{1 + \cos 2\theta}{2}\right) - 3\left(\frac{1 - \cos 2\theta}{2}\right) f ( θ ) = 4 ( 2 1 + cos 2 θ ) − 3 ( 2 1 − cos 2 θ )
Simplifying this expression:
f ( θ ) = 2 ( 1 + cos 2 θ ) − 3 2 ( 1 − cos 2 θ ) = 2 + 2 cos 2 θ − 3 2 + 3 2 cos 2 θ = 4 2 − 3 2 + ( 2 + 3 2 ) cos 2 θ = 1 2 + 7 2 cos 2 θ f(\theta) = 2(1 + \cos 2\theta) - \frac{3}{2}(1 - \cos 2\theta) \
= 2 + 2\cos 2\theta - \frac{3}{2} + \frac{3}{2}\cos 2\theta \
= \frac{4}{2} - \frac{3}{2} + \left(2 + \frac{3}{2}\right)\cos 2\theta \
= \frac{1}{2} + \frac{7}{2}\cos 2\theta f ( θ ) = 2 ( 1 + cos 2 θ ) − 2 3 ( 1 − cos 2 θ ) = 2 + 2 cos 2 θ − 2 3 + 2 3 cos 2 θ = 2 4 − 2 3 + ( 2 + 2 3 ) cos 2 θ = 2 1 + 2 7 cos 2 θ
Thus, we can rewrite it as:
f ( θ ) = 1 2 − 7 2 cos 2 θ . f(\theta) = \frac{1}{2} - \frac{7}{2}\cos 2\theta. f ( θ ) = 2 1 − 2 7 cos 2 θ .
Hence, using calculus, find the exact value of $\int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta$. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
We first express the integral:
∫ 0 π 2 θ f ( θ ) d θ = ∫ 0 π 2 θ ( 1 2 − 7 2 cos 2 θ ) d θ \int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta = \int_{0}^{\frac{\pi}{2}} \theta \left(\frac{1}{2} - \frac{7}{2}\cos 2\theta\right) d\theta ∫ 0 2 π θ f ( θ ) d θ = ∫ 0 2 π θ ( 2 1 − 2 7 cos 2 θ ) d θ
Splitting the integral:
= 1 2 ∫ 0 π 2 θ d θ − 7 2 ∫ 0 π 2 θ cos 2 θ d θ = \frac{1}{2}\int_{0}^{\frac{\pi}{2}} \theta d\theta - \frac{7}{2}\int_{0}^{\frac{\pi}{2}} \theta \cos 2\theta d\theta = 2 1 ∫ 0 2 π θ d θ − 2 7 ∫ 0 2 π θ cos 2 θ d θ
Calculate the first integral:
∫ 0 π 2 θ d θ = [ θ 2 2 ] 0 π 2 = ( π 2 ) 2 2 = π 2 8 \int_{0}^{\frac{\pi}{2}} \theta d\theta = \left[\frac{\theta^2}{2}\right]_{0}^{\frac{\pi}{2}} = \frac{\left(\frac{\pi}{2}\right)^2}{2} = \frac{\pi^2}{8} ∫ 0 2 π θ d θ = [ 2 θ 2 ] 0 2 π = 2 ( 2 π ) 2 = 8 π 2
For the second integral, we use integration by parts:
Let:
u = θ u = \theta u = θ and d v = cos 2 θ d θ dv = \cos 2\theta d\theta d v = cos 2 θ d θ .
Then, d u = d θ du = d\theta d u = d θ and v = 1 2 sin 2 θ v = \frac{1}{2}\sin 2\theta v = 2 1 sin 2 θ .
Applying integration by parts:
∫ θ cos 2 θ d θ = u v − ∫ v d u = θ ⋅ 1 2 sin 2 θ − ∫ 1 2 sin 2 θ d θ \int \theta \cos 2\theta d\theta = u v - \int v du = \theta \cdot \frac{1}{2}\sin 2\theta - \int \frac{1}{2}\sin 2\theta d\theta ∫ θ cos 2 θ d θ = uv − ∫ v d u = θ ⋅ 2 1 sin 2 θ − ∫ 2 1 sin 2 θ d θ
The second integral becomes:
Substituting back in:
Now evaluate the bound:
= [ π 2 ⋅ 1 2 ⋅ 0 − 0 ] + 1 4 = 0 + 1 4 = \left[\frac{\pi}{2} \cdot \frac{1}{2} \cdot 0 - 0\right] + \frac{1}{4} = 0 + \frac{1}{4} = [ 2 π ⋅ 2 1 ⋅ 0 − 0 ] + 4 1 = 0 + 4 1
Thus, putting everything together:
∫ 0 π 2 θ f ( θ ) d θ = 1 2 ⋅ π 2 8 − 7 2 ⋅ ( 1 4 + 0 ) = π 2 16 − 7 8 \int_{0}^{\frac{\pi}{2}} \theta f(\theta) d\theta = \frac{1}{2}\cdot \frac{\pi^2}{8} - \frac{7}{2} \cdot \left(\frac{1}{4} + 0\right)= \frac{\pi^2}{16} - \frac{7}{8} ∫ 0 2 π θ f ( θ ) d θ = 2 1 ⋅ 8 π 2 − 2 7 ⋅ ( 4 1 + 0 ) = 16 π 2 − 8 7
The final answer is:
π 2 16 − 7 8 \frac{\pi^2}{16} - \frac{7}{8} 16 π 2 − 8 7 .
Join the A-Level students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved