Photo AI

1. (a) Find the binomial expansion of $$\frac{1}{\sqrt{9 - 10x}}$$, where $|x| < \frac{9}{10}$, in ascending powers of $x$ up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 3 - 2014 - Paper 8

Question icon

Question 3

1.-(a)-Find-the-binomial-expansion-of--$$\frac{1}{\sqrt{9---10x}}$$,--where-$|x|-<-\frac{9}{10}$,-in-ascending-powers-of-$x$-up-to-and-including-the-term-in-$x^2$-Edexcel-A-Level Maths Pure-Question 3-2014-Paper 8.png

1. (a) Find the binomial expansion of $$\frac{1}{\sqrt{9 - 10x}}$$, where $|x| < \frac{9}{10}$, in ascending powers of $x$ up to and including the term in $x^2$. G... show full transcript

Worked Solution & Example Answer:1. (a) Find the binomial expansion of $$\frac{1}{\sqrt{9 - 10x}}$$, where $|x| < \frac{9}{10}$, in ascending powers of $x$ up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 3 - 2014 - Paper 8

Step 1

Find the binomial expansion of $$\frac{1}{\sqrt{9 - 10x}}$$

96%

114 rated

Answer

To find the binomial expansion, rewrite the expression:

1910x=(910x)1/2\frac{1}{\sqrt{9 - 10x}} = (9 - 10x)^{-1/2}.

Using the binomial series expansion:

(1+u)n=1+nu+n(n1)2!u2+...(1 + u)^{n} = 1 + nu + \frac{n(n - 1)}{2!}u^2 + ...

Here, set u=10x9u = -\frac{10x}{9}, so

1910x=91/2(110x9)1/2\frac{1}{\sqrt{9 - 10x}} = 9^{-1/2}(1 - \frac{10x}{9})^{-1/2}.

Using 9=3\sqrt{9} = 3, we can write:

=13(110x9)1/2= \frac{1}{3}(1 - \frac{10x}{9})^{-1/2}

The expansion for (1u)1/2(1 - u)^{-1/2} starts as:

1+12u+38u2+...1 + \frac{1}{2}u + \frac{3}{8}u^2 + ...

Substituting uu we get:

=1+12(10x9)+38(10x9)2= 1 + \frac{1}{2}\left(-\frac{10x}{9}\right) + \frac{3}{8}\left(-\frac{10x}{9}\right)^2

Calculating the terms:

  1. The constant term: 1
  2. The first term: 5x9\frac{-5x}{9}
  3. The second term: 3100x272=25x26\frac{3 \cdot 100x^2}{72} = \frac{25x^2}{6}

So, the expansion is:

13(15x9+256x2)=135x27+25x218\frac{1}{3}(1 - \frac{5x}{9} + \frac{25}{6}x^2) = \frac{1}{3} - \frac{5x}{27} + \frac{25x^2}{18}.

Step 2

Hence, or otherwise, find the expansion of $$\frac{3 + x}{\sqrt{9 - 10x}}$$

99%

104 rated

Answer

From part (a), we have:

1910x=135x27+25x218\frac{1}{\sqrt{9 - 10x}} = \frac{1}{3} - \frac{5x}{27} + \frac{25x^2}{18}.

To find the expansion of 3+x910x\frac{3 + x}{\sqrt{9 - 10x}}, we multiply:

  1. For constant term, we have:

133=1\frac{1}{3} \cdot 3 = 1

  1. The first term:

(5x27)3+13x=15x27+x3=15x27+9x27=6x27=2x9(-\frac{5x}{27}) \cdot 3 + \frac{1}{3} \cdot x = -\frac{15x}{27} + \frac{x}{3} = -\frac{15x}{27} + \frac{9x}{27} = -\frac{6x}{27} = -\frac{2x}{9}

  1. For the second term, we combine:

25x2183+(5x27)x+13x2\frac{25x^2}{18} \cdot 3 + (-\frac{5x}{27}) \cdot x + \frac{1}{3} \cdot x^2

Calculating gives:

75x2185x227+x23\frac{75x^2}{18} - \frac{5x^2}{27} + \frac{x^2}{3}

Finding a common denominator (54):

225x25410x254+18x254=233x254\frac{225x^2}{54} - \frac{10x^2}{54} + \frac{18x^2}{54} = \frac{233x^2}{54}

Combining all terms, we have:

12x9+233x2541 - \frac{2x}{9} + \frac{233x^2}{54}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;