Photo AI

Figure 1 shows part of the curve with equation $y = ext{(0.75 + cos } x)$ - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 6

Question icon

Question 3

Figure-1-shows-part-of-the-curve-with-equation-$y-=--ext{(0.75-+-cos-}-x)$-Edexcel-A-Level Maths Pure-Question 3-2010-Paper 6.png

Figure 1 shows part of the curve with equation $y = ext{(0.75 + cos } x)$. The finite region $R$, shown shaded in Figure 1, is bounded by the curve, the y-axis, the... show full transcript

Worked Solution & Example Answer:Figure 1 shows part of the curve with equation $y = ext{(0.75 + cos } x)$ - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 6

Step 1

Complete the table with values of $y$ corresponding to $x = rac{ ext{π}}{6}$ and $x = rac{ ext{π}}{4}$.

96%

114 rated

Answer

To find the values of yy, we will evaluate the curve equation at the specified xx values:

For x = rac{ ext{π}}{6}:

\approx 1.2247$$ For $x = rac{ ext{π}}{4}$: $$y = 0.75 + ext{cos} rac{ ext{π}}{4} = 0.75 + rac{ ext{1}}{ ext{√2}} \\ \approx 1.000$$ Thus, the completed table is: | $x$ | $0$ | $ rac{ ext{π}}{12}$ | $ rac{ ext{π}}{6}$ | $ rac{ ext{π}}{4}$ | $ rac{ ext{π}}{3}$ | |------------------|----------------|------------------------|----------------------|---------------------|-------------------| | $y$ | $1.3229$ | $1.2973$ | $1.2247$ | $1.000$ | $1.180$ |

Step 2

Use the trapezium rule (i)

99%

104 rated

Answer

To estimate the area of RR using the trapezium rule for x=0x = 0, x = rac{ ext{π}}{6}, and x = rac{ ext{π}}{3}:

We apply the formula: I = rac{ ext{h}}{2} (f(a) + f(b)) where a=0a = 0, b = rac{ ext{π}}{6} and h = rac{ ext{π}}{6}.

Calculating:

\ \ \ \ \ \ = rac{ ext{π}}{12} imes (1.3229 + 1.180) \\ \ \ \ \ \ = rac{ ext{π}}{12} imes 2.5029 \\ \ = rac{2.5029 imes ext{π}}{12} \\ \ \approx 1.249$$

Step 3

Use the trapezium rule (ii)

96%

101 rated

Answer

To further estimate the area of RR with yy values at x=0x = 0, x = rac{ ext{π}}{12}, x = rac{ ext{π}}{6}, x = rac{ ext{π}}{4} and x = rac{ ext{π}}{3}:

This time, the interval lengths will be different, with N=4N=4 sub-intervals:

  1. I_1 = rac{ ext{h}}{2} (f(x_0) + f(x_1))
  2. I_2 = rac{ ext{h}}{2} (f(x_1) + f(x_2))
  3. I_3 = rac{ ext{h}}{2} (f(x_2) + f(x_3))
  4. I_4 = rac{ ext{h}}{2} (f(x_3) + f(x_4))

Thus, we calculate:

\approx 1.257$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;