Photo AI

Given that $$\frac{13 - 4x}{(2x + 1)^2(x + 3)} = \frac{A}{(2x + 1)} + \frac{B}{(2x + 1)^2} + \frac{C}{(x + 3)}$$ (a) find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 5 - 2018 - Paper 9

Question icon

Question 5

Given-that--$$\frac{13---4x}{(2x-+-1)^2(x-+-3)}-=-\frac{A}{(2x-+-1)}-+-\frac{B}{(2x-+-1)^2}-+-\frac{C}{(x-+-3)}$$--(a)-find-the-values-of-the-constants-A,-B-and-C-Edexcel-A-Level Maths Pure-Question 5-2018-Paper 9.png

Given that $$\frac{13 - 4x}{(2x + 1)^2(x + 3)} = \frac{A}{(2x + 1)} + \frac{B}{(2x + 1)^2} + \frac{C}{(x + 3)}$$ (a) find the values of the constants A, B and C. ... show full transcript

Worked Solution & Example Answer:Given that $$\frac{13 - 4x}{(2x + 1)^2(x + 3)} = \frac{A}{(2x + 1)} + \frac{B}{(2x + 1)^2} + \frac{C}{(x + 3)}$$ (a) find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 5 - 2018 - Paper 9

Step 1

find the values of the constants A, B and C.

96%

114 rated

Answer

To find the constants A, B, and C, we start by rewriting the equation:

134x=A(2x+1)(x+3)+B(x+3)+C(2x+1)213 - 4x = A(2x + 1)(x + 3) + B(x + 3) + C(2x + 1)^2

Expanding this, we can match coefficients on both sides:

  1. From A(2x + 1)(x + 3):

    • Expand: A(2x2+7x+3)A(2x^2 + 7x + 3)
  2. From B(x + 3):

    • Expand: Bx+3BBx + 3B
  3. From C(2x + 1)^2:

    • Expand: C(4x2+4x+1)C(4x^2 + 4x + 1)

Combining these gives us the polynomial:

(2A+4C)x2+(7A+B+4C)x+(3A+3B)=134x(2A + 4C)x^2 + (7A + B + 4C)x + (3A + 3B) = 13 - 4x

We can set up the following system of equations by matching coefficients:

  • For x^2: 2A+4C=02A + 4C = 0
  • For x: 7A+B+4C=47A + B + 4C = -4
  • For the constant: 3A+3B=133A + 3B = 13

From these equations, we can solve for A, B, and C respectively:

Step 2

Hence find \int \frac{13 - 4x}{(2x + 1)(x + 3)} \, dx, \quad x > -\frac{1}{2}

99%

104 rated

Answer

Using the values of A, B, and C found in part (a), we can rewrite the integral:

(A(2x+1)+B(2x+1)2+C(x+3))dx\int \left( \frac{A}{(2x + 1)} + \frac{B}{(2x + 1)^2} + \frac{C}{(x + 3)} \right) \, dx

We can integrate each term independently:

  1. Integral of A/(2x + 1):

    • Result: Aln2x+1+C1A \ln|2x + 1| + C_1
  2. Integral of B/(2x + 1)^2:

    • Result: B2(2x+1)+C2-\frac{B}{2(2x + 1)} + C_2
  3. Integral of C/(x + 3):

    • Result: Clnx+3+C3C \ln|x + 3| + C_3

Combining these results, we have:

Aln2x+1B2(2x+1)+Clnx+3+CA \ln|2x + 1| - \frac{B}{2(2x + 1)} + C \ln|x + 3| + C

The final answer will depend on the specific values of A, B, and C.

Step 3

Find \int (e^{x} + 1) \, dx

96%

101 rated

Answer

To solve this integral, we can split it into two parts:

(ex+1)dx=exdx+1dx\int (e^{x} + 1) \, dx = \int e^{x} \, dx + \int 1 \, dx
  1. First integral: exdx=ex+C1\int e^{x} \, dx = e^{x} + C_1
  2. Second integral: 1dx=x+C2\int 1 \, dx = x + C_2

Thus, combining these results gives:

(ex+1)dx=ex+x+C\int (e^{x} + 1) \, dx = e^{x} + x + C

Step 4

Using the substitution $u^2 = x$, or otherwise, find \int \frac{1}{4x + 5x^2} \, dx, \quad x > 0

98%

120 rated

Answer

Using substitution u2=xu^2 = x, then dx=2ududx = 2u \, du. Thus we can rewrite the integral:

14u2+5u4(2u)du=2u5u4+4u2du\int \frac{1}{4u^2 + 5u^4} (2u) \, du = 2 \int \frac{u}{5u^4 + 4u^2} \, du

Factoring out u2u^2 gives:

=21u2(5u2+4)du = 2 \int \frac{1}{u^2(5u^2 + 4)} \, du

This can be integrated using partial fractions. Let:

1u2(5u2+4)=Au+Bu2+Cu+D5u2+4\frac{1}{u^2(5u^2 + 4)} = \frac{A}{u} + \frac{B}{u^2} + \frac{Cu + D}{5u^2 + 4}

Solving for A, B, C, and D will give us the form needed to integrate.

The final result corresponds to the appropriate antiderivatives based on the solved constants.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;