Photo AI

Given the equation: $$\frac{2(4x^2 + 1)}{(2x + 1)(2x - 1)} = \frac{A}{(2x + 1)} + \frac{B}{(2x - 1)} + \frac{C}{(2x - 1)}.$$ (a) Find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 6 - 2007 - Paper 7

Question icon

Question 6

Given-the-equation:---$$\frac{2(4x^2-+-1)}{(2x-+-1)(2x---1)}-=-\frac{A}{(2x-+-1)}-+-\frac{B}{(2x---1)}-+-\frac{C}{(2x---1)}.$$----(a)-Find-the-values-of-the-constants-A,-B-and-C-Edexcel-A-Level Maths Pure-Question 6-2007-Paper 7.png

Given the equation: $$\frac{2(4x^2 + 1)}{(2x + 1)(2x - 1)} = \frac{A}{(2x + 1)} + \frac{B}{(2x - 1)} + \frac{C}{(2x - 1)}.$$ (a) Find the values of the constant... show full transcript

Worked Solution & Example Answer:Given the equation: $$\frac{2(4x^2 + 1)}{(2x + 1)(2x - 1)} = \frac{A}{(2x + 1)} + \frac{B}{(2x - 1)} + \frac{C}{(2x - 1)}.$$ (a) Find the values of the constants A, B and C - Edexcel - A-Level Maths Pure - Question 6 - 2007 - Paper 7

Step 1

Find the values of the constants A, B and C.

96%

114 rated

Answer

To find the constants A, B, and C, we will use partial fraction decomposition. We start by performing polynomial long division on the left-hand side.

  1. Long Division:

    Divide (2(4x^2 + 1)) by ((2x + 1)(2x - 1)), which gives: [ A = 2 ]

  2. Setting Up the Fractions:

    Now, we can equate: [ 2(4x^2 + 1) = A(2x + 1)(2x - 1) + B(2x - 1) + C(2x + 1) ]

  3. Finding B and C:

    Next, by substituting convenient values for (x):

    • Let (x = \frac{-1}{2} \Rightarrow B = -2)
    • Let (x = \frac{1}{2} \Rightarrow C = 2)
  4. Final Values:

    Thus, the final values obtained are:

    • ( A = 2 )
    • ( B = -2 )
    • ( C = 2 )

Step 2

Hence show that the exact value of \( \int_0^2 \frac{2(4x^2 + 1)}{(2x + 1)(2x - 1)} \, dx \) is \( 2 + \ln k \), giving the value of the constant k.

99%

104 rated

Answer

Now we will evaluate the integral to confirm the given condition and find the constant k.

  1. Separate the Integral:

    Using the values found for A, B, and C, we rewrite the integral: [ \int_0^2 \left( \frac{2}{(2x + 1)} + \frac{-2}{(2x - 1)} + \frac{2}{(2x - 1)} \right) , dx ]

  2. Integration:

    This separates into: [ \int_0^2 \frac{2}{(2x + 1)} , dx - \int_0^2 \frac{2}{(2x - 1)} , dx ]

    Evaluating these yields: [ 2\ln(2x + 1) |{0}^{2} + 2\ln(2 - 1) |{0}^{2} ]

  3. Calculating Limits:

    Substituting the limits gives: [ 2\ln(5) - (0) + 2\ln(1) - (0) ]

    Simplifying, it results in: [ 2\ln(5) - 0 = 2 + \ln(5) ]

  4. Final Result:

    Therefore, comparing with the format ( 2 + \ln k ), we see that ( k = 5 ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;