Photo AI

5. (a) Use the substitution $x = u^2$, $u > 0$, to show that $$\int \frac{1}{x(2\sqrt{x}-1)} \, dx = \int \frac{2}{u(2u-1)} \, du.$$ (b) Hence show that $$\int_0^9 \frac{1}{x(2\sqrt{x}-1)} \, dx = 2 \ln \left( \frac{a}{b} \right)$$ where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 9

Question icon

Question 7

5.-(a)-Use-the-substitution-$x-=-u^2$,-$u->-0$,-to-show-that-$$\int-\frac{1}{x(2\sqrt{x}-1)}-\,-dx-=-\int-\frac{2}{u(2u-1)}-\,-du.$$---(b)-Hence-show-that-$$\int_0^9-\frac{1}{x(2\sqrt{x}-1)}-\,-dx-=-2-\ln-\left(-\frac{a}{b}-\right)$$-where-$a$-and-$b$-are-integers-to-be-determined.-Edexcel-A-Level Maths Pure-Question 7-2013-Paper 9.png

5. (a) Use the substitution $x = u^2$, $u > 0$, to show that $$\int \frac{1}{x(2\sqrt{x}-1)} \, dx = \int \frac{2}{u(2u-1)} \, du.$$ (b) Hence show that $$\int_0^9... show full transcript

Worked Solution & Example Answer:5. (a) Use the substitution $x = u^2$, $u > 0$, to show that $$\int \frac{1}{x(2\sqrt{x}-1)} \, dx = \int \frac{2}{u(2u-1)} \, du.$$ (b) Hence show that $$\int_0^9 \frac{1}{x(2\sqrt{x}-1)} \, dx = 2 \ln \left( \frac{a}{b} \right)$$ where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 7 - 2013 - Paper 9

Step 1

Use the substitution $x = u^2$, $u > 0$, to show that

96%

114 rated

Answer

To solve this integral, we start with the substitution:

Let x=u2x = u^2, then dx=2ududx = 2u \, du.

Substituting these into the integral,

1u2(2u1)(2u)du=2u(2u1)du.\int \frac{1}{u^2 (2u - 1)} (2u) \, du = \int \frac{2}{u(2u - 1)} \, du.

This shows the required transformation.

Step 2

Hence show that

99%

104 rated

Answer

For part (b), we want to calculate:

091x(2x1)dx\int_0^9 \frac{1}{x(2\sqrt{x}-1)} \, dx

With the substitution x=u2x = u^2, the limits change as follows:

  • When x=0x = 0, u=0u = 0
  • When x=9x = 9, u=3u = 3

Now we can rewrite the integral as:

032u(2u1)du.\int_0^3 \frac{2}{u(2u-1)} \, du.

We can split this into partial fractions:

2u(2u1)=Au+B2u1.\frac{2}{u(2u-1)} = \frac{A}{u} + \frac{B}{2u-1}.

By applying algebra, we find that A=2A = 2 and B=2B = -2. Thus:

03(2u22u1)du=2lnu2ln2u103.\int_0^3 \left( \frac{2}{u} - \frac{2}{2u-1} \right) \, du = 2 \ln |u| - 2 \ln |2u-1| \bigg|_0^3.

Evaluating this from 00 to 33:

=2(ln(3)ln(5))=2ln(35).= 2 \left( \ln(3) - \ln(5) \right) = 2 \ln \left( \frac{3}{5} \right).

Thus, letting a=3a = 3 and b=5b = 5, we confirm the result:

091x(2x1)dx=2ln(35).\int_0^9 \frac{1}{x(2\sqrt{x}-1)} \, dx = 2 \ln \left( \frac{3}{5} \right).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;