Photo AI
Question 8
y = \sqrt{3 + x} (a) Complete the table below, giving the values of y to 3 decimal places. \begin{array}{|c|c|c|c|c|} \hline x & 0 & 0.25 & 0.5 & 0.75 & 1 \\ \hlin... show full transcript
Step 1
Answer
To find the values of y for each corresponding x, we use the equation:
Filling in the table we get:
\begin{array}{|c|c|c|c|c|} \hline x & 0 & 0.25 & 0.5 & 0.75 & 1 \ \hline y & 1.000 & 1.251 & 1.495 & 1.936 & 2.000 \ \hline \end{array}
Step 2
Answer
To approximate the area under ( \sqrt{3 + x} ) from 0 to 1 using the trapezium rule, we apply:
[ \text{Area} \approx \frac{h}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + f(x_4)) ]
Where:
Substituting these values:
[ \text{Area} \approx \frac{0.25}{2} (1 + 2(1.251) + 2(1.495) + 2(1.936) + 2) ]
Calculating inside the parentheses:
Then: [ \text{Area} \approx 0.125 \times 12.364 = 1.5455 \approx 1.496 ]
Thus, the approximate value of ( \int_{0}^{1} \sqrt{3 + x} , dx ) is ( 1.496 ).
Report Improved Results
Recommend to friends
Students Supported
Questions answered