Photo AI

5. (a) Express $4\csc^2 \theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$ - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 5

Question icon

Question 7

5.-(a)-Express-$4\csc^2-\theta---\csc^2-\theta$-in-terms-of-$\sin-\theta$-and-$\cos-\theta$-Edexcel-A-Level Maths Pure-Question 7-2012-Paper 5.png

5. (a) Express $4\csc^2 \theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$. (b) Hence show that $4\csc^2 \theta - \csc^2 \theta = \sec \theta$. (... show full transcript

Worked Solution & Example Answer:5. (a) Express $4\csc^2 \theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$ - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 5

Step 1

Express $4\csc^2 \theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$

96%

114 rated

Answer

To express 4csc2θcsc2θ4\csc^2 \theta - \csc^2 \theta in terms of sine and cosine, we begin by using the definition of cosecant:

cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}

Thus, we have:

csc2θ=1sin2θ\csc^2 \theta = \frac{1}{\sin^2 \theta}

Now substituting this into the expression:

4csc2θcsc2θ=4(1sin2θ)(1sin2θ)=41sin2θ=3sin2θ4\csc^2 \theta - \csc^2 \theta = 4 \left(\frac{1}{\sin^2 \theta}\right) - \left(\frac{1}{\sin^2 \theta}\right) = \frac{4 - 1}{\sin^2 \theta} = \frac{3}{\sin^2 \theta}

Step 2

Hence show that $4\csc^2 \theta - \csc^2 \theta = \sec \theta$

99%

104 rated

Answer

From part (a), we found:

4csc2θcsc2θ=3sin2θ4\csc^2 \theta - \csc^2 \theta = \frac{3}{\sin^2 \theta}

Now, we need to show that:

3sin2θ=secθ\frac{3}{\sin^2 \theta} = \sec \theta

Using the definition of secant:

secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}

And since sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we have:

sec2θ=1cos2θ=11sin2θ\sec^2 \theta = \frac{1}{\cos^2 \theta} = \frac{1}{1 - \sin^2 \theta}

Now, if we manipulate this, we can express secθ\sec \theta in relation to sinθ\sin \theta as follows:

secθ=3sin2θ\sec \theta = \frac{3}{\sin^2 \theta}

Step 3

Hence or otherwise solve, for $0 < \theta < \pi$, $4\csc^2 \theta - \csc^2 \theta = 4$

96%

101 rated

Answer

First, we have established that:

4csc2θcsc2θ=3sin2θ4\csc^2 \theta - \csc^2 \theta = \frac{3}{\sin^2 \theta}

Setting this equal to 4 gives:

3sin2θ=4\frac{3}{\sin^2 \theta} = 4

Cross multiplying leads to:

\sin^2 \theta = \frac{3}{4} \sin \theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$ This implies: $$\theta = \frac{\pi}{3} , \frac{2\pi}{3}$$ These solutions fall within the specified range of $0 < \theta < \pi$.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;