Photo AI

1. (a) Express $7 \, ext{cos} \, x - 24 \, ext{sin} \, x$ in the form $R \, ext{cos} \, (x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 2 - 2011 - Paper 4

Question icon

Question 2

1.-(a)-Express-$7-\,--ext{cos}-\,-x---24-\,--ext{sin}-\,-x$-in-the-form-$R-\,--ext{cos}-\,-(x-+-\alpha)$-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 2-2011-Paper 4.png

1. (a) Express $7 \, ext{cos} \, x - 24 \, ext{sin} \, x$ in the form $R \, ext{cos} \, (x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. Give the val... show full transcript

Worked Solution & Example Answer:1. (a) Express $7 \, ext{cos} \, x - 24 \, ext{sin} \, x$ in the form $R \, ext{cos} \, (x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 2 - 2011 - Paper 4

Step 1

Express $7 \cos x - 24 \sin x$ in the form $R \cos (x + \alpha)$

96%

114 rated

Answer

To express the equation in the form ( R \cos(x + \alpha) ), we identify:

  1. Set coefficients:

    • Rcosα=7R \cos \alpha = 7
    • Rsinα=24R \sin \alpha = -24
  2. Calculate ( R ): R=72+(24)2=49+576=625=25R = \sqrt{7^2 + (-24)^2} = \sqrt{49 + 576} = \sqrt{625} = 25

  3. Determine ( \alpha ): tan(α)=247α=tan1(247)1.287\tan(\alpha) = \frac{-24}{7} \Rightarrow \alpha = \tan^{-1}\left(-\frac{24}{7}\right) \approx -1.287 (radians) But since α\alpha must be in 0<α<π20 < \alpha < \frac{\pi}{2}, we take the positive angle that gives us the same tangent value, which is approximately 2.3542.354. Thus, the answer to three decimal places is:

    • α2.355\alpha \approx 2.355.

Step 2

Hence write down the minimum value of $7 \cos x - 24 \sin x$

99%

104 rated

Answer

The expression 7cosx24sinx7 \cos x - 24 \sin x can take on minimum values determined by ( -R ), therefore:

  • Minimum value = 25-25.

Step 3

Solve, for $0 < x < 2\pi$, the equation $7 \cos x - 24 \sin x = 10$

96%

101 rated

Answer

From the equation:

7cosx24sinx=107 \cos x - 24 \sin x = 10

We can express this as:

25cos(x+α)=10    cos(x+α)=1025=0.425 \cos(x + \alpha) = 10 \implies \cos(x + \alpha) = \frac{10}{25} = 0.4

Now, calculating ( x + \alpha ):

  • First find the principal value: x+α=cos1(0.4)1.159x + \alpha = \cos^{-1}(0.4) \approx 1.159

  • Now, considering the periodic nature of cosine, we have: x+α=1.159+2kπ,andx+α=1.159+2kπx + \alpha = 1.159 + 2k\pi, \quad \text{and} \quad x + \alpha = -1.159 + 2k\pi

Thus, the values for xx in the specified range can be derived:

  • For k=0k=0: x1.1592.3551.196(notvalid)x \approx 1.159 - 2.355 \approx -1.196 \quad (not \, valid) x1.1592.3544.045(valid:4.05)x \approx 1.159 - 2.354 \approx 4.045 \quad (valid: \approx 4.05)
  • For k=1k=1: x1.159+2π7.443(notvalidingivenrange)x \approx 1.159 + 2\pi \approx 7.443 \quad (not \, valid \, in \, given \, range) x1.159+2π5.124(valid:5.12)x \approx -1.159 + 2\pi \approx 5.124 \quad (valid: \approx 5.12)

Thus, the solutions are:

  • x4.05x \approx 4.05 and x5.12x \approx 5.12 to two decimal places.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;