Photo AI

Given that $y=1.5$ at $x=-2$, solve the differential equation $$\frac{dy}{dx}=\frac{\sqrt{4y+3}}{x^3}$$ giving your answer in the form $y=f(x)$. - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 5

Question icon

Question 7

Given-that-$y=1.5$-at-$x=-2$,-solve-the-differential-equation-$$\frac{dy}{dx}=\frac{\sqrt{4y+3}}{x^3}$$-giving-your-answer-in-the-form-$y=f(x)$.-Edexcel-A-Level Maths Pure-Question 7-2011-Paper 5.png

Given that $y=1.5$ at $x=-2$, solve the differential equation $$\frac{dy}{dx}=\frac{\sqrt{4y+3}}{x^3}$$ giving your answer in the form $y=f(x)$.

Worked Solution & Example Answer:Given that $y=1.5$ at $x=-2$, solve the differential equation $$\frac{dy}{dx}=\frac{\sqrt{4y+3}}{x^3}$$ giving your answer in the form $y=f(x)$. - Edexcel - A-Level Maths Pure - Question 7 - 2011 - Paper 5

Step 1

Find $\int (4y + 3)^{-\frac{1}{2}} dy$

96%

114 rated

Answer

To find ( \int (4y + 3)^{-\frac{1}{2}} dy ), we use the substitution method:

We know that ( \frac{d}{dy}(4y + 3) = 4 ). Thus,

(4y+3)12dy=14(4y+3)12(4)dy=(4y+3)12+C\int (4y + 3)^{-\frac{1}{2}} dy = \frac{1}{4}\int (4y + 3)^{-\frac{1}{2}} (4) dy = (4y + 3)^{\frac{1}{2}} + C

This results in:

12(4y+3)12+C\frac{1}{2}(4y + 3)^{\frac{1}{2}} + C

Step 2

Solve the differential equation

99%

104 rated

Answer

We rearrange the equation to isolate variables:

(4y+3)12dy=1x3dx\int (4y + 3)^{-\frac{1}{2}} dy = \int \frac{1}{x^3} dx

Which we can solve as:

  1. The left side yields:

12(4y+3)12=12x2+C\frac{1}{2}(4y + 3)^{\frac{1}{2}} = -\frac{1}{2x^2} + C

  1. At this point, we now substitute the initial conditions (2,1.5)(-2, 1.5) into the integrated equation to find ( C ).

Substituting:\n
12(4(1.5)+3)=12(2)2+C\frac{1}{2}(4(1.5) + 3) = -\frac{1}{2(-2)^2} + C

This further simplifies to:

12(6)=18+C\frac{1}{2}(6) = -\frac{1}{8} + C

Hence,

3=18+C3 = -\frac{1}{8} + C

Solving for ( C ) yields:

C=3+18=258C = 3 + \frac{1}{8} = \frac{25}{8}

  1. Substituting back, we have:

12(4y+3)12=12x2+258\frac{1}{2}(4y + 3)^{\frac{1}{2}} = -\frac{1}{2x^2} + \frac{25}{8}

  1. Finally, rearranging the equation gives:

y=14(2x)234y = \frac{1}{4} \left( \frac{2}{x} \right)^2 - \frac{3}{4}.

So the solution can be expressed as:

y=32x4x2y = \frac{3-2x}{4x^2}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;