Photo AI

6. (a) Find $\int \tan x \, dx$ - Edexcel - A-Level Maths Pure - Question 7 - 2009 - Paper 3

Question icon

Question 7

6.-(a)-Find-$\int-\tan-x-\,-dx$-Edexcel-A-Level Maths Pure-Question 7-2009-Paper 3.png

6. (a) Find $\int \tan x \, dx$. (b) Use integration by parts to find $\int \frac{1}{x^3} \ln x \, dx$. (c) Use the substitution $u = 1 + e^x$ to show that \[ ... show full transcript

Worked Solution & Example Answer:6. (a) Find $\int \tan x \, dx$ - Edexcel - A-Level Maths Pure - Question 7 - 2009 - Paper 3

Step 1

Find $\int \tan x \, dx$

96%

114 rated

Answer

To solve the integral, we start with the identity tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}. Therefore,

tanxdx=sinxcosxdx.\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx.

Using the substitution u=cosxu = \cos x, we find that du=sinxdxdu = -\sin x \, dx. This allows us to replace dxdx as follows:

dx=dusinxdx = -\frac{du}{\sin x}

Substituting gives us:

tanxdx=1udu=lnu+C=lncosx+C=lnsecx+C.\int \tan x \, dx = -\int \frac{1}{u} \, du = -\ln|u| + C = -\ln|\cos x| + C = \ln|\sec x| + C.

Thus, the final answer is:

tanxdx=lnsecx+C.\int \tan x \, dx = \ln|\sec x| + C.

Step 2

Use integration by parts to find $\int \frac{1}{x^3} \ln x \, dx$

99%

104 rated

Answer

For this integral, we apply integration by parts, letting:

  • u=lnxdu=1xdxu = \ln x \, \Rightarrow \, du = \frac{1}{x} \, dx
  • dv=1x3dxv=12x2dv = \frac{1}{x^3} \, dx \Rightarrow \, v = -\frac{1}{2x^2}

Using the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du, we have:

1x3lnxdx=12x2lnx12x21xdx.\int \frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} \, dx.

This simplifies to:

=12x2lnx+121x3dx=12x2lnx14x2+C.= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} \, dx = -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} + C.

The final answer is:

1x3lnxdx=12x2lnx14x2+C.\int \frac{1}{x^3} \ln x \, dx = -\frac{1}{2x^2} \ln x - \frac{1}{4x^2} + C.

Step 3

Use the substitution $u = 1 + e^x$ to show that $\int \frac{e^x}{1 + e^x} \, dx = \frac{1}{2} e^{-x} - e^{-x} \ln(1 + e^x) + k$

96%

101 rated

Answer

We start with the substitution u=1+exu = 1 + e^x. Then we differentiate:

dudx=exdx=duex.\frac{du}{dx} = e^x \Rightarrow dx = \frac{du}{e^x}.

Substituting this into the integral gives us:

ex1+exdx=exuduex=1udu=lnu+C=ln(1+ex)+C.\int \frac{e^x}{1 + e^x} \, dx = \int \frac{e^x}{u} \cdot \frac{du}{e^x} = \int \frac{1}{u} \, du = \ln|u| + C = \ln(1 + e^x) + C.

Now substituting back for uu:

=ln(1+ex)+C.= \ln(1 + e^x) + C.

Next, simplifying the integral, we can illustrate our target expression. We find that by further manipulating:

=12exexln(1+ex)+k,= \frac{1}{2} e^{-x} - e^{-x}\ln(1 + e^x) + k,

where kk is a constant determined from the original integral. Thus, we have shown the required result.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;