Photo AI

3. (a) Express \( \frac{5x + 3}{(2x - 3)(x + 2)} \) in partial fractions - Edexcel - A-Level Maths Pure - Question 6 - 2005 - Paper 6

Question icon

Question 6

3.-(a)-Express-\(-\frac{5x-+-3}{(2x---3)(x-+-2)}-\)-in-partial-fractions-Edexcel-A-Level Maths Pure-Question 6-2005-Paper 6.png

3. (a) Express \( \frac{5x + 3}{(2x - 3)(x + 2)} \) in partial fractions. (b) Hence find the exact value of \( \int \frac{5x + 3}{(2x - 3)(x + 2)} \, dx \), giving ... show full transcript

Worked Solution & Example Answer:3. (a) Express \( \frac{5x + 3}{(2x - 3)(x + 2)} \) in partial fractions - Edexcel - A-Level Maths Pure - Question 6 - 2005 - Paper 6

Step 1

Express \( \frac{5x + 3}{(2x - 3)(x + 2)} \) in partial fractions.

96%

114 rated

Answer

To express ( \frac{5x + 3}{(2x - 3)(x + 2)} ) in partial fractions, we start with the form:

[ \frac{5x + 3}{(2x - 3)(x + 2)} = \frac{A}{2x - 3} + \frac{B}{x + 2} ]

Multiplying both sides by ( (2x - 3)(x + 2) ) gives:

[ 5x + 3 = A(x + 2) + B(2x - 3) ]

Expanding the right-hand side results in:

[ 5x + 3 = Ax + 2A + 2Bx - 3B ]

Combining like terms:

[ 5x + 3 = (A + 2B)x + (2A - 3B) ]

This gives us a system of equations:

  1. ( A + 2B = 5 )
  2. ( 2A - 3B = 3 )

Now we can solve for ( A ) and ( B ).

Using substitution or elimination, we find:

From equation 1: ( A = 5 - 2B ) and substituting into equation 2:

[ 2(5 - 2B) - 3B = 3 ] [ 10 - 4B - 3B = 3 ] [ 10 - 7B = 3 ] [ -7B = -7 \implies B = 1 ]

Substituting ( B = 1 ) back into equation 1:

[ A + 2(1) = 5 \implies A = 3 ]

Thus, we have: [ A = 3, \quad B = 1 ]

Therefore: [ \frac{5x + 3}{(2x - 3)(x + 2)} = \frac{3}{2x - 3} + \frac{1}{x + 2} ]

Step 2

Hence find the exact value of \( \int \frac{5x + 3}{(2x - 3)(x + 2)} \, dx \), giving your answer as a single logarithm.

99%

104 rated

Answer

Now we can evaluate the integral:

[ \int \frac{5x + 3}{(2x - 3)(x + 2)} , dx = \int \left( \frac{3}{2x - 3} + \frac{1}{x + 2} \right) , dx ]

This can be split into two separate integrals:

[ \int \frac{3}{2x - 3} , dx + \int \frac{1}{x + 2} , dx ]

For the first integral, we have:

[ \int \frac{3}{2x - 3} , dx = \frac{3}{2} \ln |2x - 3| + C_1 ]

For the second integral:

[ \int \frac{1}{x + 2} , dx = \ln |x + 2| + C_2 ]

Combining these results, we get:

[ \int \frac{5x + 3}{(2x - 3)(x + 2)} , dx = \frac{3}{2} \ln |2x - 3| + \ln |x + 2| + C ]

Now, we need to find the definite integral from ( x = -1 ) to ( x = 3 ):

[ \left[ \frac{3}{2} \ln |2x - 3| + \ln |x + 2| \right]_{-1}^{3} ]

Evaluating this from ( x = -1 ) to ( x = 3 ):

At ( x = 3: ) [ \frac{3}{2} \ln |3| + \ln(5) = \frac{3}{2} \ln(3) + \ln(5) ]

At ( x = -1: ) [ \frac{3}{2} \ln(5) + \ln(1) = \frac{3}{2} \ln(5) ]

Thus, the result is: [ \left( \frac{3}{2} \ln(3) + \ln(5) \right) - \frac{3}{2} \ln(5) = \frac{3}{2} \ln(3) - \frac{1}{2} \ln(5) ]

Combining the logarithms gives: [ = \ln \left( \frac{3^{3/2}}{5^{1/2}} \right) = \ln \left( \frac{3\sqrt{3}}{\sqrt{5}} \right) = \ln \left( \frac{3 \sqrt{3}}{\sqrt{5}} \right) ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;