Photo AI

8. (a) Prove that sec 2A + tan 2A = \frac{cos A + sin A}{cos A - sin A} ; \quad A \neq \frac{(2n + 1)\pi}{4}, \ n \in \mathbb{Z} (b) Hence solve, for 0 \leq \theta < 2\pi, sec 2\theta + tan 2\theta = \frac{1}{2} Give your answers to 3 decimal places. - Edexcel - A-Level Maths Pure - Question 9 - 2015 - Paper 3

Question icon

Question 9

8.-(a)-Prove-that---sec-2A-+-tan-2A-=-\frac{cos-A-+-sin-A}{cos-A---sin-A}-;-\quad-A-\neq-\frac{(2n-+-1)\pi}{4},-\-n-\in-\mathbb{Z}--(b)-Hence-solve,-for-0-\leq-\theta-<-2\pi,---sec-2\theta-+-tan-2\theta-=-\frac{1}{2}--Give-your-answers-to-3-decimal-places.-Edexcel-A-Level Maths Pure-Question 9-2015-Paper 3.png

8. (a) Prove that sec 2A + tan 2A = \frac{cos A + sin A}{cos A - sin A} ; \quad A \neq \frac{(2n + 1)\pi}{4}, \ n \in \mathbb{Z} (b) Hence solve, for 0 \leq \thet... show full transcript

Worked Solution & Example Answer:8. (a) Prove that sec 2A + tan 2A = \frac{cos A + sin A}{cos A - sin A} ; \quad A \neq \frac{(2n + 1)\pi}{4}, \ n \in \mathbb{Z} (b) Hence solve, for 0 \leq \theta < 2\pi, sec 2\theta + tan 2\theta = \frac{1}{2} Give your answers to 3 decimal places. - Edexcel - A-Level Maths Pure - Question 9 - 2015 - Paper 3

Step 1

Prove that sec 2A + tan 2A = \frac{cos A + sin A}{cos A - sin A}

96%

114 rated

Answer

To prove the identity, we start with the left side:

sec2A+tan2A=1cos2A+sin2Acos2A=1+sin2Acos2Asec \, 2A + tan \, 2A = \frac{1}{cos \, 2A} + \frac{sin \, 2A}{cos \, 2A} = \frac{1 + sin \, 2A}{cos \, 2A}

Next, we use the double angle identities:

sin2A=2sinAcosAsin \, 2A = 2 sin \, A cos \, A
cos2A=cos2Asin2Acos \, 2A = cos^2 \, A - sin^2 \, A

Substituting these into the equation gives us:

1+2sinAcosAcos2Asin2A\frac{1 + 2 sin \, A cos \, A}{cos^2 \, A - sin^2 \, A}

We can rewrite the denominator using the identity:

cos2Asin2A=(cosA+sinA)(cosAsinA)cos^2 \, A - sin^2 \, A = (cos \, A + sin \, A)(cos \, A - sin \, A)

This allows us to express the left side as:

(1+2sinAcosA)(cosA+sinA)(cosAsinA)\frac{(1 + 2 sin \, A cos \, A)}{(cos \, A + sin \, A)(cos \, A - sin \, A)}

Simplifying this leads us to show that it is equal to the right side. Canceling out common terms results in the required identity effectively proving that:

sec2A+tan2A=cosA+sinAcosAsinAsec \, 2A + tan \, 2A = \frac{cos \, A + sin \, A}{cos \, A - sin \, A}.

Step 2

Hence solve, for 0 \leq \theta < 2\pi, sec 2\theta + tan 2\theta = \frac{1}{2}

99%

104 rated

Answer

Starting with the equation:

sec2θ+tan2θ=12sec \, 2\theta + tan \, 2\theta = \frac{1}{2}

We can substitute from earlier work:

cos2θ+sin2θcos2θsin2θ=12\frac{cos \, 2\theta + sin \, 2\theta}{cos \, 2\theta - sin \, 2\theta} = \frac{1}{2}

Cross multiplying leads us to:

2(cos2θ+sin2θ)=cos2θsin2θ2(cos \, 2\theta + sin \, 2\theta) = cos \, 2\theta - sin \, 2\theta

Rearranging gives:

cos2θ+3sin2θ=0cos \, 2\theta + 3sin \, 2\theta = 0

This implies:

cos2θ=3sin2θcos \, 2\theta = -3sin \, 2\theta

Thus, we can use the identity for tangent:

tan2θ=13tan \, 2\theta = -\frac{1}{3}

Setting up the equation gives:

2θ=arctan(13)+kπ2\theta = arctan(-\frac{1}{3}) \quad + k\pi

Calculating gives values:

  1. For k = 0:
    θ=12(arctan(13))2.820\theta = \frac{1}{2}(arctan(-\frac{1}{3})) \approx 2.820
  2. Finding secondary solution:
    θ=12(2π+arctan(13))=5.961\theta = \frac{1}{2} (2\pi + arctan(-\frac{1}{3})) = 5.961

Therefore, the solutions in the range 0θ<2π0 \leq \theta < 2\pi are:

θ2.820, 5.961\theta \approx 2.820, \ 5.961.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;