Photo AI

9. (a) Prove that $$ \sin 2x - \tan x = \tan x \cos 2x, \quad x \neq (2n + 1)90^{\circ}, \quad n \in \mathbb{Z} $$ (b) Given that \(x \neq 90^{\circ}\) and \(x \neq 270^{\circ}\), solve, for \(0 \leq x < 360^{\circ}\), $$ \sin 2x - \tan x = 3\tan x \sin x - Edexcel - A-Level Maths Pure - Question 2 - 2016 - Paper 3

Question icon

Question 2

9.-(a)-Prove-that--$$-\sin-2x---\tan-x-=-\tan-x-\cos-2x,-\quad-x-\neq-(2n-+-1)90^{\circ},-\quad-n-\in-\mathbb{Z}-$$--(b)-Given-that-\(x-\neq-90^{\circ}\)-and-\(x-\neq-270^{\circ}\),-solve,-for-\(0-\leq-x-<-360^{\circ}\),--$$-\sin-2x---\tan-x-=-3\tan-x-\sin-x-Edexcel-A-Level Maths Pure-Question 2-2016-Paper 3.png

9. (a) Prove that $$ \sin 2x - \tan x = \tan x \cos 2x, \quad x \neq (2n + 1)90^{\circ}, \quad n \in \mathbb{Z} $$ (b) Given that \(x \neq 90^{\circ}\) and \(x \ne... show full transcript

Worked Solution & Example Answer:9. (a) Prove that $$ \sin 2x - \tan x = \tan x \cos 2x, \quad x \neq (2n + 1)90^{\circ}, \quad n \in \mathbb{Z} $$ (b) Given that \(x \neq 90^{\circ}\) and \(x \neq 270^{\circ}\), solve, for \(0 \leq x < 360^{\circ}\), $$ \sin 2x - \tan x = 3\tan x \sin x - Edexcel - A-Level Maths Pure - Question 2 - 2016 - Paper 3

Step 1

Prove that sin 2x - tan x = tan x cos 2x

96%

114 rated

Answer

To prove the equation, we start from the left-hand side:

sin2xtanx=sin2xsinxcosx.\sin 2x - \tan x = \sin 2x - \frac{\sin x}{\cos x}.

Using the double angle identity for sine, we know:

sin2x=2sinxcosx.\sin 2x = 2\sin x \cos x.

Thus, substituting this into our equation gives:

2sinxcosxsinxcosx.2\sin x \cos x - \frac{\sin x}{\cos x}.

Finding a common denominator:

=2sinxcos2xsinxcosx.= \frac{2\sin x \cos^2 x - \sin x}{\cos x}.

Factoring out (\sin x):

=sinx(2cos2x1)cosx.= \frac{\sin x (2\cos^2 x - 1)}{\cos x}.

Applying the identity (2\cos^2 x - 1 = \cos 2x):

=sinxcos2xcosx=tanxcos2x.= \frac{\sin x \cos 2x}{\cos x} = \tan x \cos 2x.

Thus, we have proved that:

sin2xtanx=tanxcos2x.\sin 2x - \tan x = \tan x \cos 2x.

This completes the proof.

Step 2

Given that x ≠ 90° and x ≠ 270°, solve, for 0 ≤ x < 360°: sin 2x - tan x = 3 tan x sin x

99%

104 rated

Answer

Starting with the equation:

sin2xtanx=3tanxsinx.\sin 2x - \tan x = 3\tan x \sin x.

Substituting the double angle identity for sine:

2sinxcosxtanx=3tanxsinx.2\sin x \cos x - \tan x = 3\tan x \sin x.

This means:

2sinxcosxsinxcosx=3sinxcosxsinx.2\sin x \cos x - \frac{\sin x}{\cos x} = 3\cdot\frac{\sin x}{\cos x}\cdot \sin x.

Multiplying through by (\cos^2 x) (valid since (x \neq 90^{\circ}) and (x \neq 270^{\circ})) gives:

2sinxcos3xsinx=3sin2xcosx.2\sin x \cos^3 x - \sin x = 3\sin^2 x \cos x.

Rearranging this leads to:

2sinxcos3x3sin2xcosxsinx=0.2\sin x \cos^3 x - 3\sin^2 x \cos x - \sin x = 0.

Factoring out (\sin x":

sinx(2cos3x3sinxcosx1)=0.\sin x (2\cos^3 x - 3\sin x \cos x - 1) = 0.

This results in:

  1. (\sin x = 0) gives (x = 0°, 180°);

  2. Solving (2\cos^3 x - 3\sin x \cos x - 1 = 0) leads to:

Using a numerical or analytical approach, it can be shown:

  • One solution is approximately (16.3°);
  • Another is approximately (163.7°); Thus the solutions are:

x = 0°, 16.3°, 163.7°, 180°.\

These values are within the required range.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;