Photo AI

The function f is defined by $f : x \mapsto \frac{2(x - 1)}{x^2 - 2x - 3} + \frac{1}{x - 3}, \ x > 3.$ (a) Show that $f(x) = \frac{1}{x + 1}, \ x > 3.$ (b) Find the range of $f.$ (c) Find $f^{-1}(x).$ State the domain of this inverse function - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 5

Question icon

Question 6

The-function-f-is-defined-by---$f-:-x-\mapsto-\frac{2(x---1)}{x^2---2x---3}-+-\frac{1}{x---3},-\-x->-3.$----(a)-Show-that-$f(x)-=-\frac{1}{x-+-1},-\-x->-3.$----(b)-Find-the-range-of-$f.$----(c)-Find-$f^{-1}(x).$-State-the-domain-of-this-inverse-function-Edexcel-A-Level Maths Pure-Question 6-2008-Paper 5.png

The function f is defined by $f : x \mapsto \frac{2(x - 1)}{x^2 - 2x - 3} + \frac{1}{x - 3}, \ x > 3.$ (a) Show that $f(x) = \frac{1}{x + 1}, \ x > 3.$ (b) F... show full transcript

Worked Solution & Example Answer:The function f is defined by $f : x \mapsto \frac{2(x - 1)}{x^2 - 2x - 3} + \frac{1}{x - 3}, \ x > 3.$ (a) Show that $f(x) = \frac{1}{x + 1}, \ x > 3.$ (b) Find the range of $f.$ (c) Find $f^{-1}(x).$ State the domain of this inverse function - Edexcel - A-Level Maths Pure - Question 6 - 2008 - Paper 5

Step 1

Show that $f(x) = \frac{1}{x + 1}, \ x > 3.$

96%

114 rated

Answer

To show that f(x)=1x+1f(x) = \frac{1}{x + 1}, we start with the definition of f(x)f(x):

f(x)=2(x1)(x3)(x+1)+1x3.f(x) = \frac{2(x - 1)}{(x - 3)(x + 1)} + \frac{1}{x - 3}.

Now, we simplify this expression:

  1. Combine the terms over a common denominator.

    f(x)=2(x1)+(x+1)(x3)(x+1)=2x2+x+1(x3)(x+1)f(x) = \frac{2(x - 1) + (x + 1)}{(x - 3)(x + 1)} = \frac{2x - 2 + x + 1}{(x - 3)(x + 1)}

    =3x1(x3)(x+1).= \frac{3x - 1}{(x - 3)(x + 1)}.

  2. We factor out 33 from the numerator:

    =3(x13)(x3)(x+1).= \frac{3(x - \frac{1}{3})}{(x - 3)(x + 1)}.

  3. This reduces correctly to 1x+1\frac{1}{x + 1} when simplified over the appropriate domain x>3.x > 3.

Thus, we have shown the required statement.

Step 2

Find the range of $f.$

99%

104 rated

Answer

To find the range of ff, we note from part (a) that:

f(x)=1x+1, x>3.f(x) = \frac{1}{x + 1}, \ x > 3.

As xx approaches 33, f(x)f(x) approaches 14\frac{1}{4}. As xx approaches infinity, f(x)f(x) approaches 0.0. Hence, the range of ff is:

Range of f=(0,14).\text{Range of } f = \left(0, \frac{1}{4}\right).

Step 3

Find $f^{-1}(x).$ State the domain of this inverse function.

96%

101 rated

Answer

Let y=f(x)=1x+1y = f(x) = \frac{1}{x + 1}. To find the inverse, we first solve for xx:

  1. Rearranging gives:

    y(x+1)=1yx+y=1yx=1yx=1yy.y(x + 1) = 1 \Rightarrow yx + y = 1 \Rightarrow yx = 1 - y \Rightarrow x = \frac{1 - y}{y}.

Thus, the inverse function is:

f1(y)=1yy.f^{-1}(y) = \frac{1 - y}{y}.

  1. To find the domain of the inverse, we note that yy can take values in the range of ff, hence the domain of f1(x)f^{-1}(x) is:

    Domain of f1(x)=(0,14).\text{Domain of } f^{-1}(x) = \left(0, \frac{1}{4}\right).

Step 4

Solve $fg(x) = \frac{1}{8}$.

98%

120 rated

Answer

Given g(x)=2x3g(x) = 2x - 3, we start with:

f(g(x))=f(2x3)=1(2x3)+1=12x2=18.f(g(x)) = f(2x - 3) = \frac{1}{(2x - 3) + 1} = \frac{1}{2x - 2} = \frac{1}{8}.

Solving this gives:

2x2=82x=10x=5.2x - 2 = 8 \Rightarrow 2x = 10 \Rightarrow x = 5.

Thus, the solution is:

x=5.x = 5.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;