Photo AI

Show that: (i) \(\frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x, \ x \neq (n - \frac{1}{2})\pi, \ n \in \mathbb{Z}.\) (ii) \(\frac{1}{2} (\cos 2x - \sin 2x) = \cos^2 x - \cos x \sin x - \frac{1}{2}.\) (b) Hence, or otherwise, show that the equation \(\cos \left( \frac{\cos 2\theta}{\cos \theta + \sin \theta} \right) = \frac{1}{2}\) can be written as \(\sin 2\theta = \cos 2\theta.\) (c) Solve, for \(0 < \theta < 2\pi\), \(\sin 2\theta = \cos 2\theta\) giving your answers in terms of \(\pi\). - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 5

Question icon

Question 8

Show-that:--(i)--\(\frac{\cos-2x}{\cos-x-+-\sin-x}-=-\cos-x---\sin-x,-\-x-\neq-(n---\frac{1}{2})\pi,-\-n-\in-\mathbb{Z}.\)--(ii)--\(\frac{1}{2}-(\cos-2x---\sin-2x)-=-\cos^2-x---\cos-x-\sin-x---\frac{1}{2}.\)--(b)-Hence,-or-otherwise,-show-that-the-equation--\(\cos-\left(-\frac{\cos-2\theta}{\cos-\theta-+-\sin-\theta}-\right)-=-\frac{1}{2}\)--can-be-written-as--\(\sin-2\theta-=-\cos-2\theta.\)--(c)-Solve,-for-\(0-<-\theta-<-2\pi\),-\(\sin-2\theta-=-\cos-2\theta\)--giving-your-answers-in-terms-of-\(\pi\).-Edexcel-A-Level Maths Pure-Question 8-2006-Paper 5.png

Show that: (i) \(\frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x, \ x \neq (n - \frac{1}{2})\pi, \ n \in \mathbb{Z}.\) (ii) \(\frac{1}{2} (\cos 2x - \sin 2x) =... show full transcript

Worked Solution & Example Answer:Show that: (i) \(\frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x, \ x \neq (n - \frac{1}{2})\pi, \ n \in \mathbb{Z}.\) (ii) \(\frac{1}{2} (\cos 2x - \sin 2x) = \cos^2 x - \cos x \sin x - \frac{1}{2}.\) (b) Hence, or otherwise, show that the equation \(\cos \left( \frac{\cos 2\theta}{\cos \theta + \sin \theta} \right) = \frac{1}{2}\) can be written as \(\sin 2\theta = \cos 2\theta.\) (c) Solve, for \(0 < \theta < 2\pi\), \(\sin 2\theta = \cos 2\theta\) giving your answers in terms of \(\pi\). - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 5

Step 1

(i) \(\frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x\)

96%

114 rated

Answer

To show this identity, start by using the double angle formula for cosine:

cos2x=cos2xsin2x.\cos 2x = \cos^2 x - \sin^2 x.
Substituting this into the left-hand side gives:

cos2xsin2xcosx+sinx.\frac{\cos^2 x - \sin^2 x}{\cos x + \sin x}.
Now, factor the numerator:

=(cosxsinx)(cosx+sinx)cosx+sinx.= \frac{(\cos x - \sin x)(\cos x + \sin x)}{\cos x + \sin x}.
Assuming (\cos x + \sin x \neq 0), this simplifies to:

cosxsinx.\cos x - \sin x.

Step 2

(ii) \(\frac{1}{2} (\cos 2x - \sin 2x) = \cos^2 x - \cos x \sin x - \frac{1}{2}\)

99%

104 rated

Answer

Starting with the left-hand side:

12(cos2xsin2x)=12(cos2xsin2x2sinxcosx).\frac{1}{2} (\cos 2x - \sin 2x) = \frac{1}{2} (\cos^2 x - \sin^2 x - 2\sin x \cos x).
Now we can rewrite it, focusing on identities:

=12((cos2xsin2x)2sinxcosx).= \frac{1}{2} ((\cos^2 x - \sin^2 x) - 2\sin x \cos x).
This indicates:

=cos2xsin2xsin2x.= \cos^2 x - \sin^2 x - \sin 2x.
So consider:

cos2xsinxcos2x(sin2x+cosxsinx)12.\cos^2 x - \sin x \to \cos^2 x - (\sin^2 x + \cos x \sin x) - \frac{1}{2}.

Step 3

Hence, or otherwise, show that \(\cos \left( \frac{\cos 2\theta}{\cos \theta + \sin \theta} \right) = \frac{1}{2}\)

96%

101 rated

Answer

Using the result from part (ii), we can view it as:

If (\sin 2\theta = \cos 2\theta), we use the identity that:

Here, we know:

cos2θcosθ+sinθ=12\frac{\cos 2\theta}{\cos \theta + \sin \theta} = \frac{1}{2} gives rise to a derived condition of (\sin^2 2\theta + \cos^2 2\theta = 1.)
From rearranging, (\cos 2\theta = \frac{1}{2}) yields the desired form.

Step 4

Solve, for \(0 < \theta < 2\pi\), \(\sin 2\theta = \cos 2\theta\)

98%

120 rated

Answer

Given that (\sin 2\theta = \cos 2\theta), we rewrite it as:

tan2θ=1.\tan 2\theta = 1.
This means:

2θ=π4+nπ, nZ.2\theta = \frac{\pi}{4} + n\pi, \ n \in \mathbb{Z}.
Thus solving for (\theta):

  1. For (n = 0):

θ=π8.\theta = \frac{\pi}{8}.

  1. For (n = 1):

θ=5π8.\theta = \frac{5\pi}{8}.

  1. For (n = 2):

θ=9π8.\theta = \frac{9\pi}{8}.
4. For (n = 3):

θ=13π8.\theta = \frac{13\pi}{8}.

This gives all solutions satisfying the condition ((0 < \theta < 2\pi)).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;