Photo AI

7. (i) Solve, for $0 eq x < rac{eta}{2}$, the equation 4sin$x = sec$x - Edexcel - A-Level Maths Pure - Question 9 - 2018 - Paper 2

Question icon

Question 9

7.-(i)-Solve,-for-$0--eq-x-<--rac{eta}{2}$,-the-equation-4sin$x-=-sec$x-Edexcel-A-Level Maths Pure-Question 9-2018-Paper 2.png

7. (i) Solve, for $0 eq x < rac{eta}{2}$, the equation 4sin$x = sec$x. (ii) Solve, for $0 eq heta < 360^{ extcirc}$, the equation 5sin$ heta - 5cos heta = 2$ g... show full transcript

Worked Solution & Example Answer:7. (i) Solve, for $0 eq x < rac{eta}{2}$, the equation 4sin$x = sec$x - Edexcel - A-Level Maths Pure - Question 9 - 2018 - Paper 2

Step 1

Solve, for $0 eq x < rac{eta}{2}$, the equation 4sin$x = sec$x.

96%

114 rated

Answer

To solve the equation, we start with:

4extsinx=extsecx4 ext{sin}x = ext{sec}x

Using the identity for secant, we can rewrite this as:

4 ext{sin}x = rac{1}{ ext{cos}x}

Multiplying both sides by extcosx ext{cos}x (ensuring extcosxeq0 ext{cos}x eq 0), we get:

4extsinxextcosx=14 ext{sin}x ext{cos}x = 1

This can be transformed with the double angle identity:

2extsin(2x)=12 ext{sin}(2x) = 1

Thus, we have:

ext{sin}(2x) = rac{1}{2}

The solutions for ext{sin}(2x) = rac{1}{2} are:

2x = rac{eta}{6} + 2keta ext{ and } 2x = rac{5eta}{6} + 2keta

Solving for xx, we get:

x = rac{eta}{12} + keta ext{ and } x = rac{5eta}{12} + keta

Considering the interval 0 eq x < rac{eta}{2}, we find:

  1. For k=0k=0:
    • x = rac{eta}{12} ext{ and } x = rac{5eta}{12}
    • Both values are within the range.

Step 2

Solve, for $0 eq heta < 360^{ extcirc}$, the equation 5sin$ heta - 5cos heta = 2$

99%

104 rated

Answer

Starting with the equation:

5extsinheta5extcosheta=25 ext{sin} heta - 5 ext{cos} heta = 2

We can rearrange this to isolate terms involving sin and cos:

5(extsinhetaextcosheta)=25( ext{sin} heta - ext{cos} heta) = 2

Dividing both sides by 5 gives:

ext{sin} heta - ext{cos} heta = rac{2}{5}

Expressing extsinheta ext{sin} heta and extcosheta ext{cos} heta in terms of ext{Rsin}( heta - eta), we identify RR and eta with:

  • R=ext(12+12)=ext2R = ext{√}(1^2 + 1^2) = ext{√}2
  • aneta = rac{1}{1} = 1 thus eta = 45^{ extcirc}

The equation now reads:

ext{√2sin}( heta - 45^{ extcirc}) = rac{2}{5}

Solving for heta45extcirc heta - 45^{ extcirc} results in:

heta - 45^{ extcirc} = ext{arcsin} rac{2}{5 ext{√2}}

Calculating gives two angles in the specified range, leading to:

  1. heta = 45^{ extcirc} + ext{arcsin} rac{2}{5 ext{√2}} ext{ (1)}
  2. heta = 225^{ extcirc} + ext{arcsin} rac{2}{5 ext{√2}} ext{ (2)}

Finally, approximating both angles gives answers to one decimal place.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;