Photo AI

Using the substitution $u = ext{cos}\,x + 1$, or otherwise, show that $$\int_0^{\frac{\pi}{2}} e^{\text{cos}(x) + 1} \sin(x) \, dx = e(e - 1)$$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 6

Question icon

Question 4

Using-the-substitution-$u-=--ext{cos}\,x-+-1$,-or-otherwise,-show-that-$$\int_0^{\frac{\pi}{2}}-e^{\text{cos}(x)-+-1}-\sin(x)-\,-dx-=-e(e---1)$$-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 6.png

Using the substitution $u = ext{cos}\,x + 1$, or otherwise, show that $$\int_0^{\frac{\pi}{2}} e^{\text{cos}(x) + 1} \sin(x) \, dx = e(e - 1)$$

Worked Solution & Example Answer:Using the substitution $u = ext{cos}\,x + 1$, or otherwise, show that $$\int_0^{\frac{\pi}{2}} e^{\text{cos}(x) + 1} \sin(x) \, dx = e(e - 1)$$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 6

Step 1

Using the substitution $u = \text{cos}\,x + 1$

96%

114 rated

Answer

First, we need to change the variable from xx to uu. The derivative of uu can be calculated as follows: dudx=sin(x)dx=dusin(x)\frac{du}{dx} = -\sin(x) \\ \Rightarrow dx = -\frac{du}{\sin(x)}

Next, we substitute into the integral: 0π2ecos(x)+1sin(x)dx=12eu(du)\int_0^{\frac{\pi}{2}} e^{\text{cos}(x) + 1} \sin(x) \, dx = \int_1^2 e^u (-du)

Changing the limits of integration when x=0x = 0, u=cos(0)+1=2u = \text{cos}(0) + 1 = 2, and when x=π2x = \frac{\pi}{2}, u=cos(π2)+1=1u = \text{cos}\left(\frac{\pi}{2}\right) + 1 = 1. Therefore the integral becomes:

21eudu=12eudu -\int_2^1 e^u \, du = \int_1^2 e^u \, du

Step 2

Evaluate the integral

99%

104 rated

Answer

Now, we compute the integral: eudu=eu+C\int e^u \, du = e^u + C

Thus, 12eudu=[eu]12=e2e1=e2e\int_1^2 e^u \, du = \left[ e^u \right]_1^2 = e^2 - e^1 = e^2 - e

Step 3

Final result

96%

101 rated

Answer

Finally, we see that: 0π2ecos(x)+1sin(x)dx=e(e1)\int_0^{\frac{\pi}{2}} e^{\text{cos}(x) + 1} \sin(x) \, dx = e(e - 1)

This matches the required result.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;