Photo AI

1. (a) Show that $$\frac{\sin 2\theta}{1+\cos 2\theta} = \tan \theta$$ (b) Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\sin 2\theta}{1+\cos 2\theta} = 1$$ Give your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 5

Question icon

Question 2

1.-(a)-Show-that--$$\frac{\sin-2\theta}{1+\cos-2\theta}-=-\tan-\theta$$--(b)-Hence-find,-for-$-180^\circ-\leq-\theta-<-180^\circ$,-all-the-solutions-of--$$\frac{2\sin-2\theta}{1+\cos-2\theta}-=-1$$--Give-your-answers-to-1-decimal-place.-Edexcel-A-Level Maths Pure-Question 2-2010-Paper 5.png

1. (a) Show that $$\frac{\sin 2\theta}{1+\cos 2\theta} = \tan \theta$$ (b) Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\si... show full transcript

Worked Solution & Example Answer:1. (a) Show that $$\frac{\sin 2\theta}{1+\cos 2\theta} = \tan \theta$$ (b) Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\sin 2\theta}{1+\cos 2\theta} = 1$$ Give your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 5

Step 1

Show that $$\frac{\sin 2\theta}{1+\cos 2\theta} = \tan \theta$$

96%

114 rated

Answer

To show that

sin2θ1+cos2θ=tanθ\frac{\sin 2\theta}{1+\cos 2\theta} = \tan \theta,

we start by using the double angle identities:

  1. Recall that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta

  2. Also, cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta - 1 Therefore, 1+cos2θ=1+(2cos2θ1)=2cos2θ1 + \cos 2\theta = 1 + (2\cos^2 \theta - 1) = 2\cos^2 \theta.

  3. Substitute these into the fraction:

    sin2θ1+cos2θ=2sinθcosθ2cos2θ=sinθcosθ=tanθ\frac{\sin 2\theta}{1+\cos 2\theta} = \frac{2\sin \theta \cos \theta}{2\cos^2 \theta} = \frac{\sin \theta}{\cos \theta} = \tan \theta.

Thus, we have shown the required identity.

Step 2

Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\sin 2\theta}{1+\cos 2\theta} = 1$$

99%

104 rated

Answer

Starting from the previous result, we replace the fraction with its equivalent:

tanθ=1\tan \theta = 1.

To find the angles where this is true, we can write:

  1. θ=45+k180,\theta = 45^\circ + k\cdot180^\circ, for integer values of kk.
  2. Considering the interval 180θ<180-180^\circ \leq \theta < 180^\circ:
    • For k=1k = -1: θ=45180=135\theta = 45^\circ - 180^\circ = -135^\circ.
    • For k=0k = 0: θ=45\theta = 45^\circ.
    • For k=1k = 1: θ=45+180=225,\theta = 45^\circ + 180^\circ = 225^\circ, (which is outside the interval)

Thus, the solutions are:

θ=135,45\theta = -135^\circ, 45^\circ.

To convert these into decimal form (noting that 45=4545^\circ = 45 and 135=135-135^\circ = -135) gives us:

  • θ=135.0\theta = -135.0 to 1 decimal place.
  • θ=45.0\theta = 45.0 to 1 decimal place.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;