To evaluate the integral:
∫xe−21xdx
Using integration by parts, we let:
u=x,dv=e−21xdx
Then, du=dx and v=−2e−21x. The integration by parts gives:
∫udv=uv−∫vdu
Thus, we have:
=−2xe−21x−∫−2e−21xdx
Solving this, we will evaluate:
∫e−21xdx=−2e−21x+C
Combining terms, we get:
−2xe−21x+4e−21x+C.