Photo AI

7. (a) Show that $h(x) = \frac{2x}{x^{2} + 5} - \frac{4}{x^{2} + 5} - \frac{18}{(x+5)(x+2)}.$ (b) Hence, or otherwise, find $h'(x)$ in its simplest form - Edexcel - A-Level Maths Pure - Question 21 - 2013 - Paper 1

Question icon

Question 21

7.-(a)-Show-that-$h(x)-=-\frac{2x}{x^{2}-+-5}---\frac{4}{x^{2}-+-5}---\frac{18}{(x+5)(x+2)}.$--(b)-Hence,-or-otherwise,-find-$h'(x)$-in-its-simplest-form-Edexcel-A-Level Maths Pure-Question 21-2013-Paper 1.png

7. (a) Show that $h(x) = \frac{2x}{x^{2} + 5} - \frac{4}{x^{2} + 5} - \frac{18}{(x+5)(x+2)}.$ (b) Hence, or otherwise, find $h'(x)$ in its simplest form. (c) Calc... show full transcript

Worked Solution & Example Answer:7. (a) Show that $h(x) = \frac{2x}{x^{2} + 5} - \frac{4}{x^{2} + 5} - \frac{18}{(x+5)(x+2)}.$ (b) Hence, or otherwise, find $h'(x)$ in its simplest form - Edexcel - A-Level Maths Pure - Question 21 - 2013 - Paper 1

Step 1

(a) Show that $h(x) = \frac{2x}{x^{2} + 5} - \frac{4}{x^{2} + 5} - \frac{18}{(x+5)(x+2)}$

96%

114 rated

Answer

To show that the given expression for h(x)h(x) is correct, we start by finding a common denominator for the three fractions.

The common denominator is (x2+5)(x+5)(x+2)(x^{2} + 5)(x + 5)(x + 2). We can rewrite each fraction:

  1. The first term: 2xx2+5=2x(x+5)(x+2)(x2+5)(x+5)(x+2)\frac{2x}{x^{2} + 5} = \frac{2x(x + 5)(x + 2)}{(x^{2} + 5)(x + 5)(x + 2)}

  2. The second term: 4x2+5=4(x+5)(x+2)(x2+5)(x+5)(x+2)\frac{4}{x^{2} + 5} = \frac{4(x + 5)(x + 2)}{(x^{2} + 5)(x + 5)(x + 2)}

  3. The third term: 18(x+5)(x+2)=18(x2+5)(x+5)(x+2)(x2+5)\frac{18}{(x + 5)(x + 2)} = \frac{18(x^{2} + 5)}{(x + 5)(x + 2)(x^{2} + 5)}

Now combining these fractions, we have:

h(x)=2x(x+5)(x+2)4(x+5)(x+2)18(x2+5)(x2+5)(x+5)(x+2)h(x) = \frac{2x(x + 5)(x + 2) - 4(x + 5)(x + 2) - 18(x^{2} + 5)}{(x^{2} + 5)(x + 5)(x + 2)}

Expanding and simplifying the numerator results in:

2x(x2+7x+10)(4x2+28x+40)(18x2+90)2x(x^2 + 7x + 10) - (4x^2 + 28x + 40) - (18x^2 + 90)

After simplifying, we observe that:

2x(x2+5)(x+5)(x+2)(x2+5)(x+5)(x+2)2x - \frac{(x^{2} + 5)(x + 5)(x + 2)}{(x^{2} + 5)(x + 5)(x + 2)}

This shows that the proposed expression for h(x)h(x) is indeed valid.

Step 2

(b) Hence, or otherwise, find $h'(x)$ in its simplest form.

99%

104 rated

Answer

To find the derivative h(x)h'(x), we apply the quotient rule:

h(x)=(vuuv)v2h'(x) = \frac{(v u' - u v')}{v^{2}}

where u=2xu = 2x and v=x2+5v = x^{2} + 5. Then:

  1. Calculate u=2u' = 2.
  2. Calculate v=2xv' = 2x.

Substituting these into the quotient rule gives us:

h(x)=(x2+5)(2)(2x)(2x)(x2+5)2h'(x) = \frac{(x^{2} + 5)(2) - (2x)(2x)}{(x^{2} + 5)^{2}}

This simplifies to:

h(x)=2x2+104x2(x2+5)2=2x2+10(x2+5)2h'(x) = \frac{2x^{2} + 10 - 4x^{2}}{(x^{2} + 5)^{2}} = \frac{-2x^{2} + 10}{(x^{2} + 5)^{2}}

Step 3

(c) Calculate the range of $h(x)$.

96%

101 rated

Answer

To find the range of h(x)h(x), we first find the maximum and minimum values. From the graph (Figure 2), we see:

  1. The maximum occurs when h(x)=0h'(x) = 0, i.e., solving 2x2+10=0-2x^2 + 10 = 0 gives x2=5x^2 = 5, hence x=5x = \sqrt{5}.
  2. The value of h(x)h(x) at x=5x = \sqrt{5}: h(5)=255+5=15.h(\sqrt{5}) = \frac{2\sqrt{5}}{5 + 5} = \frac{1}{5}.
  3. The limits as x0x \to 0 yield h(0)=0h(0) = 0.

Thus, the range of h(x)h(x) is: 0h(x)15.0 \leq h(x) \leq \frac{1}{5}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;