Photo AI

The line $l_1$ has equation $$egin{pmatrix} 1 \ 0 \ -1 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ \\ 0 \ -1 \ 0 \ \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 0 \ \end{pmatrix}.$$ The line $l_2$ has equation $$egin{pmatrix} 1 \ 3 \ 6 \\ 2 \ 6 \ -1 \\ -1 \ -1 \ 1 \\ \\ 1 \ 0 \ 1 \ \end{pmatrix} + \mu \begin{pmatrix} 1 \ 1 \ -1 \\ \end{pmatrix}.$$ (a) Show that $l_1$ and $l_2$ do not meet - Edexcel - A-Level Maths Pure - Question 6 - 2007 - Paper 7

Question icon

Question 6

The-line-$l_1$-has-equation--$$egin{pmatrix}-1-\-0-\--1-\\-0-\-1-\-0-\\-0-\-0-\-1-\\-\\-0-\--1-\-0-\-\end{pmatrix}-+-\lambda-\begin{pmatrix}-1-\-1-\-0-\-\end{pmatrix}.$$---The-line-$l_2$-has-equation--$$egin{pmatrix}-1-\-3-\-6-\\-2-\-6-\--1-\\--1-\--1-\-1-\\-\\-1-\-0-\-1-\-\end{pmatrix}-+-\mu-\begin{pmatrix}-1-\-1-\--1-\\-\end{pmatrix}.$$---(a)-Show-that-$l_1$-and-$l_2$-do-not-meet-Edexcel-A-Level Maths Pure-Question 6-2007-Paper 7.png

The line $l_1$ has equation $$egin{pmatrix} 1 \ 0 \ -1 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ \\ 0 \ -1 \ 0 \ \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 0 \ \end{pmatri... show full transcript

Worked Solution & Example Answer:The line $l_1$ has equation $$egin{pmatrix} 1 \ 0 \ -1 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ \\ 0 \ -1 \ 0 \ \end{pmatrix} + \lambda \begin{pmatrix} 1 \ 1 \ 0 \ \end{pmatrix}.$$ The line $l_2$ has equation $$egin{pmatrix} 1 \ 3 \ 6 \\ 2 \ 6 \ -1 \\ -1 \ -1 \ 1 \\ \\ 1 \ 0 \ 1 \ \end{pmatrix} + \mu \begin{pmatrix} 1 \ 1 \ -1 \\ \end{pmatrix}.$$ (a) Show that $l_1$ and $l_2$ do not meet - Edexcel - A-Level Maths Pure - Question 6 - 2007 - Paper 7

Step 1

Show that $l_1$ and $l_2$ do not meet

96%

114 rated

Answer

To check if lines l1l_1 and l2l_2 intersect, we equate the parametric equations of both lines:
egin{pmatrix} 1 + \lambda \ \ 0 + \lambda \ \ -1 \ \end{pmatrix} = \begin{pmatrix} 1 + \mu \ \ 3 + \mu \ \ 6 \ \end{pmatrix}.
This gives us three equations to consider:

  1. From the first component:
    1+λ=1+μ(1)1 + \lambda = 1 + \mu \quad (1)
  2. From the second component:
    λ=3+μ(2)\lambda = 3 + \mu \quad (2)
  3. From the third component:
    1=6(3)-1 = 6 \quad (3)
    • which is a contradiction.
      Thus, there are no values of λ\lambda and μ\mu that satisfy these equations simultaneously, indicating that the lines l1l_1 and l2l_2 do not meet.

Step 2

Find the cosine of the acute angle between $AB$ and $l_1$

99%

104 rated

Answer

First, we find the coordinates of points AA and BB. Given λ=1\lambda = 1, the coordinates of point AA on line l1l_1 are:
A=(1+1  0+1  1 )=(2 1 1 ).A = \begin{pmatrix} 1 + 1 \ \ 0 + 1 \ \ -1 \ \end{pmatrix} = \begin{pmatrix} 2 \ 1 \ -1 \ \end{pmatrix}.
For μ=2\mu = 2, the coordinates of point BB on line l2l_2 are:
B=(1+2  3+2  6 )=(3 5 6 ).B = \begin{pmatrix} 1 + 2 \ \ 3 + 2 \ \ 6 \ \end{pmatrix} = \begin{pmatrix} 3 \ 5 \ 6 \ \end{pmatrix}.
Next, we find vector AB\overrightarrow{AB}:
AB=BA=(3 5 6 )(2 1 1 )=(1 4 7 ).\overrightarrow{AB} = B - A = \begin{pmatrix} 3 \ 5 \ 6 \ \end{pmatrix} - \begin{pmatrix} 2 \ 1 \ -1 \ \end{pmatrix} = \begin{pmatrix} 1 \ 4 \ 7 \ \end{pmatrix}.
The direction vector of line l1l_1 is (1 1 0 )\begin{pmatrix} 1 \ 1 \ 0 \ \end{pmatrix}.
Now we calculate the cosine of the angle θ\theta between these vectors using the dot product:
cos(θ)=ABdl1ABdl1.\cos(\theta) = \frac{\overrightarrow{AB} \cdot d_{l_1}}{|\overrightarrow{AB}| |d_{l_1}|}.
Calculating the dot product:
ABdl1=(1 4 7 )(1 1 0 )=11+41+70=5.\overrightarrow{AB} \cdot d_{l_1} = \begin{pmatrix} 1 \ 4 \ 7 \ \end{pmatrix} \cdot \begin{pmatrix} 1 \ 1 \ 0 \ \end{pmatrix} = 1 \cdot 1 + 4 \cdot 1 + 7 \cdot 0 = 5.
Calculating the magnitudes:
AB=12+42+72=66,dl1=12+12=2.|\overrightarrow{AB}| = \sqrt{1^2 + 4^2 + 7^2} = \sqrt{66}, \quad |d_{l_1}| = \sqrt{1^2 + 1^2} = \sqrt{2}.
Putting it all together:
cos(θ)=5662=5132.\cos(\theta) = \frac{5}{\sqrt{66} \cdot \sqrt{2}} = \frac{5}{\sqrt{132}}. Finally, the cosine of the acute angle between ABAB and l1l_1 is given by:
$$\cos(\theta) \approx 0.435.$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;