Photo AI

Solve, for $0 \leq \theta < \pi$, the equation $$\sin 3\theta - \sqrt{3} \cos 3\theta = 0$$ giving your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 2 - 2015 - Paper 2

Question icon

Question 2

Solve,-for-$0-\leq-\theta-<-\pi$,-the-equation--$$\sin-3\theta---\sqrt{3}-\cos-3\theta-=-0$$-giving-your-answers-in-terms-of-$\pi$-Edexcel-A-Level Maths Pure-Question 2-2015-Paper 2.png

Solve, for $0 \leq \theta < \pi$, the equation $$\sin 3\theta - \sqrt{3} \cos 3\theta = 0$$ giving your answers in terms of $\pi$. (ii) Given that $$4\sin^{2} x +... show full transcript

Worked Solution & Example Answer:Solve, for $0 \leq \theta < \pi$, the equation $$\sin 3\theta - \sqrt{3} \cos 3\theta = 0$$ giving your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 2 - 2015 - Paper 2

Step 1

Solve, for $0 \leq \theta < \pi$, the equation $$\sin 3\theta - \sqrt{3} \cos 3\theta = 0$$

96%

114 rated

Answer

To solve the equation, we can rewrite it as:

sin3θcos3θ=3\frac{\sin 3\theta}{\cos 3\theta} = \sqrt{3}

This means that:

tan3θ=3\tan 3\theta = \sqrt{3}

The general solutions for tanϕ=3\tan \phi = \sqrt{3} occur at:

ϕ=π3+nπ,nZ\phi = \frac{\pi}{3} + n\pi, \quad n \in \mathbb{Z}

Setting ϕ=3θ\phi = 3\theta, we have:

3θ=π3+nπ3\theta = \frac{\pi}{3} + n\pi

To find θ\theta, divide both sides by 3:

θ=π9+nπ3\theta = \frac{\pi}{9} + \frac{n\pi}{3}

We need θ\theta to be in the interval 0θ<π0 \leq \theta < \pi. For n=0n=0, we get:

θ=π9\theta = \frac{\pi}{9}

For n=1n=1:

θ=π9+π3=π9+3π9=4π9\theta = \frac{\pi}{9} + \frac{\pi}{3} = \frac{\pi}{9} + \frac{3\pi}{9} = \frac{4\pi}{9}

For n=2n=2:

θ=π9+2π3=π9+6π9=7π9\theta = \frac{\pi}{9} + \frac{2\pi}{3} = \frac{\pi}{9} + \frac{6\pi}{9} = \frac{7\pi}{9}

For n=3n=3, it exceeds π\pi. Therefore, the solutions in that interval are:

θ=π9,4π9,7π9\theta = \frac{\pi}{9}, \frac{4\pi}{9}, \frac{7\pi}{9}

Step 2

Given that $$4\sin^{2} x + \cos x = 4 - k,\ 0 \leq k \leq 3$$ find $\cos x$ in terms of $k$.

99%

104 rated

Answer

Rearranging the equation gives:

4sin2x+cosx+k4=04\sin^{2} x + \cos x + k - 4 = 0

Using the identity sin2x=1cos2x\sin^{2} x = 1 - \cos^{2} x, we substitute:

4(1cos2x)+cosx+k4=04(1 - \cos^{2} x) + \cos x + k - 4 = 0

This simplifies to:

4cos2x+cosx+(k4)=0-4\cos^{2} x + \cos x + (k - 4) = 0

Rearranging yields:

4cos2xcosx(k4)=04\cos^{2} x - \cos x - (k - 4) = 0

Applying the quadratic formula:

cosx=b±b24ac2a\cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=4a = 4, b=1b = -1, and c=(k4)c = -(k - 4) gives:

cosx=1±1+16(k4)8\cos x = \frac{1 \pm \sqrt{1 + 16(k - 4)}}{8}

Thus, the final answer for cosx\cos x in terms of kk is:

cosx=1±16k638\cos x = \frac{1 \pm \sqrt{16k - 63}}{8}

Step 3

When $k = 3$, find the values of $x$ in the range $0 \leq x < 360^{\circ}$

96%

101 rated

Answer

Substituting k=3k = 3, we have:

cosx=1±16(3)638=1±48638=1±158\cos x = \frac{1 \pm \sqrt{16(3) - 63}}{8} = \frac{1 \pm \sqrt{48 - 63}}{8} = \frac{1 \pm \sqrt{-15}}{8}

Since this expression involves the square root of a negative number, cosx\cos x cannot have real values. Hence, there are no values of xx satisfying this equation in the range 0x<3600 \leq x < 360^{\circ}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;