Photo AI

Express $2 \, ext{cos} \theta - \text{sin} \theta$ in the form $R\text{cos}(\theta + \alpha)$, where $R$ and $ \alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\circ$ - Edexcel - A-Level Maths Pure - Question 4 - 2016 - Paper 3

Question icon

Question 4

Express-$2-\,--ext{cos}-\theta---\text{sin}-\theta$-in-the-form-$R\text{cos}(\theta-+-\alpha)$,-where-$R$-and-$-\alpha$-are-constants,-$R->-0$-and-$0-<-\alpha-<-90^\circ$-Edexcel-A-Level Maths Pure-Question 4-2016-Paper 3.png

Express $2 \, ext{cos} \theta - \text{sin} \theta$ in the form $R\text{cos}(\theta + \alpha)$, where $R$ and $ \alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\... show full transcript

Worked Solution & Example Answer:Express $2 \, ext{cos} \theta - \text{sin} \theta$ in the form $R\text{cos}(\theta + \alpha)$, where $R$ and $ \alpha$ are constants, $R > 0$ and $0 < \alpha < 90^\circ$ - Edexcel - A-Level Maths Pure - Question 4 - 2016 - Paper 3

Step 1

Express $2 \text{cos} \theta - \text{sin} \theta$ in the form $R\text{cos}(\theta + \alpha)$

96%

114 rated

Answer

R=5R = \sqrt{5}, \alpha = 26.57^\circ$

To express 2cosθsinθ2 \text{cos} \theta - \text{sin} \theta in the form Rcos(θ+α)R \text{cos}(\theta + \alpha), we use the identities:

R=a2+b2R = \sqrt{a^2 + b^2}

a = 2 and b = -1. Thus, we compute:

R=22+(1)2=5R = \sqrt{2^2 + (-1)^2} = \sqrt{5}

Next, we find α \alpha using:

tanα=12\tan \alpha = \frac{-1}{2}

Calculating gives α26.57 \alpha \approx 26.57^\circ. Therefore, we have:

2cosθsinθ=5cos(θ+26.57)2 \text{cos} \theta - \text{sin} \theta = \sqrt{5} \text{cos}(\theta + 26.57^\circ)

Step 2

Hence solve, for $0 \leq \theta < 360^\circ$, $ \frac{2}{2 \text{cos} \theta - \text{sin} \theta} = 15 $

99%

104 rated

Answer

We rearrange the equation as:

2=15(2cosθsinθ)2 = 15 (2 \text{cos} \theta - \text{sin} \theta)

Solving gives:

cosθ=1730\text{cos} \theta = \frac{17}{30}

Calculating this leads to:

  1. θ33.00\theta \approx 33.00^\circ
  2. θ273.00\theta \approx 273.00^\circ (due to periodicity)

Thus, the solutions for θ\theta are approximately 33.033.0^\circ and 273.0273.0^\circ.

Step 3

Use your solutions to parts (a) and (b) to deduce the smallest positive value of $\theta$ for which $ \frac{2}{2 \text{cos} \theta + \text{sin} \theta} = 15 $

96%

101 rated

Answer

To solve for the new equation, we rearrange as:

2=15(2cosθ+sinθ)2 = 15 (2 \text{cos} \theta + \text{sin} \theta)

This leads to:

cosθ=1730\text{cos} \theta = \frac{17}{30}

The smallest positive value for θ\theta here is the same as calculated, leading directly to:

θ86.1\theta \approx 86.1^\circ

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;