To find the area under the curve from point A (x=−4) to point B (x=2), we set up the integral:
Area=∫−42(x(x+4)(x−2))dx
First, we expand the integrand:
x(x+4)(x−2)=x(x2+2x−8)=x3+2x2−8x
Now we integrate term by term:
∫(x3+2x2−8x)dx=4x4+32x3−4x2+C
Evaluating this from −4 to 2:
[4(2)4+32(2)3−4(2)2]−[4(−4)4+32(−4)3−4(−4)2]
Calculating this gives:
=[4+316−16]−[64−3128−64]
Simplifying:
=[−12+316]−[−3128]=[−336+316+3128]
Thus:
=3108=36.
Therefore, the total area of the shaded region is 36 square units.