Photo AI

4. (a) Express $6 \, \cos \theta + 8 \, \sin \theta$ in the form $R \cos (\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 25 - 2013 - Paper 1

Question icon

Question 25

4.-(a)-Express-$6-\,-\cos-\theta-+-8-\,-\sin-\theta$-in-the-form-$R-\cos-(\theta---\alpha)$,-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 25-2013-Paper 1.png

4. (a) Express $6 \, \cos \theta + 8 \, \sin \theta$ in the form $R \cos (\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. Give the value of $\al... show full transcript

Worked Solution & Example Answer:4. (a) Express $6 \, \cos \theta + 8 \, \sin \theta$ in the form $R \cos (\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 25 - 2013 - Paper 1

Step 1

Express $6 \cos \theta + 8 \sin \theta$ in the form $R \cos (\theta - \alpha)$

96%

114 rated

Answer

First, we calculate RR using Pythagoras' theorem: R2=62+82=36+64=100R=10.R^2 = 6^2 + 8^2 = 36 + 64 = 100 \Rightarrow R = 10.

Next, we find α\alpha using the tangent function: tanα=86α=tan1(86)0.927 radians.\tan \alpha = \frac{8}{6} \Rightarrow \alpha = \tan^{-1}\left(\frac{8}{6}\right) \approx 0.927 \text{ radians}. Therefore, the expression is given by: 6cosθ+8sinθ=10cos(θ0.927).6 \cos \theta + 8 \sin \theta = 10 \cos(\theta - 0.927).

Step 2

Calculate the maximum value of $p(\theta)$

99%

104 rated

Answer

To find the maximum value of p(θ)p(\theta): Given: p(θ)=412+6cosθ+8sinθ.p(\theta) = \frac{4}{12 + 6 \cos \theta + 8 \sin \theta}.

The minimum value of the denominator occurs when 6cosθ+8sinθ6 \cos \theta + 8 \sin \theta is maximized, which was previously determined to be 1010. Therefore: 12+10=2212 + 10 = 22 Thus: Maximum of p(θ)=422=0.181.\text{Maximum of } p(\theta) = \frac{4}{22} = 0.181.

Step 3

Determine the value of $\theta$ at which the maximum occurs

96%

101 rated

Answer

The maximum occurs when: 6cosθ+8sinθ=106 \cos \theta + 8 \sin \theta = 10 Thus: cos(θ0.927)=1θ0.927=0θ=0.927.\cos(\theta - 0.927) = 1 \Rightarrow \theta - 0.927 = 0 \Rightarrow \theta = 0.927.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;