Photo AI

5. (a) Use the substitution $x = u^2$, $u > 0$, to show that \[ \int \frac{1}{x(2\sqrt{x} - 1)} \, dx = \int \frac{2}{u(2u - 1)} \, du \] (b) Hence show that \[ \int_0^9 \frac{1}{x(2\sqrt{x} - 1)} \, dx = 2 \ln\left( \frac{a}{b} \right) \] where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 9

Question icon

Question 5

5.-(a)-Use-the-substitution-$x-=-u^2$,-$u->-0$,-to-show-that-\[-\int-\frac{1}{x(2\sqrt{x}---1)}-\,-dx-=-\int-\frac{2}{u(2u---1)}-\,-du-\]----(b)-Hence-show-that-\[-\int_0^9-\frac{1}{x(2\sqrt{x}---1)}-\,-dx-=-2-\ln\left(-\frac{a}{b}-\right)-\]---where-$a$-and-$b$-are-integers-to-be-determined.-Edexcel-A-Level Maths Pure-Question 5-2013-Paper 9.png

5. (a) Use the substitution $x = u^2$, $u > 0$, to show that \[ \int \frac{1}{x(2\sqrt{x} - 1)} \, dx = \int \frac{2}{u(2u - 1)} \, du \] (b) Hence show that \[ \... show full transcript

Worked Solution & Example Answer:5. (a) Use the substitution $x = u^2$, $u > 0$, to show that \[ \int \frac{1}{x(2\sqrt{x} - 1)} \, dx = \int \frac{2}{u(2u - 1)} \, du \] (b) Hence show that \[ \int_0^9 \frac{1}{x(2\sqrt{x} - 1)} \, dx = 2 \ln\left( \frac{a}{b} \right) \] where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 9

Step 1

Use the substitution $x = u^2$, $u > 0$, to show that

96%

114 rated

Answer

To start solving this, we will first compute the differential:

dx=2ududx = 2u \, du

Next, substitute x=u2x = u^2 into the integral:

1x(2x1)dx=1u2(2u1)(2udu)\int \frac{1}{x(2\sqrt{x} - 1)} \, dx = \int \frac{1}{u^2(2u - 1)} \, (2u \, du)
This simplifies to:

2u(2u1)du\int \frac{2}{u(2u - 1)} \, du

This shows that the substitution is correct.

Step 2

Hence show that

99%

104 rated

Answer

Using the result from part (a), we can compute the integral:

091x(2x1)dx=032u(2u1)du\int_0^9 \frac{1}{x(2\sqrt{x} - 1)} \, dx = \int_0^3 \frac{2}{u(2u - 1)} \, du

To evaluate this integral, we break it down using partial fractions:

2u(2u1)=Au+B2u1\frac{2}{u(2u - 1)} = \frac{A}{u} + \frac{B}{2u - 1}

Solving for AA and BB, we find: A=2,B=2A = 2, \quad B = -2

Thus,

(2u22u1)du\int \left( \frac{2}{u} - \frac{2}{2u - 1} \right) \, du

This leads us to:

2lnu2ln2u12 \ln |u| - 2 \ln |2u - 1|

Evaluating the limits from u=0u=0 to u=3u=3 gives: [2ln(3)2ln(5)]=2ln(35)\left[ 2\ln(3) - 2\ln(5) \right] = 2\ln\left(\frac{3}{5}\right)

This shows that: 091x(2x1)dx=2ln(35)\int_0^9 \frac{1}{x(2\sqrt{x} - 1)} \, dx = 2\ln\left(\frac{3}{5}\right)

Thus, we can identify a=3a = 3 and b=5b = 5.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;