Photo AI

7. Show that $h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)}$, for $x \geq 0$ - Edexcel - A-Level Maths Pure - Question 28 - 2013 - Paper 1

Question icon

Question 28

7.-Show-that-$h(x)-=-\frac{2x}{x^2-+-5}---\frac{4}{x^2-+-5}---\frac{18}{(x^2-+-5)(x-+-2)}$,-for-$x-\geq-0$-Edexcel-A-Level Maths Pure-Question 28-2013-Paper 1.png

7. Show that $h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)}$, for $x \geq 0$. (b) Hence, or otherwise, find $h'(x)$ in its simplest f... show full transcript

Worked Solution & Example Answer:7. Show that $h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)}$, for $x \geq 0$ - Edexcel - A-Level Maths Pure - Question 28 - 2013 - Paper 1

Step 1

Show that $h(x) = \frac{2x}{x^2 + 5} - \frac{4}{x^2 + 5} - \frac{18}{(x^2 + 5)(x + 2)}$

96%

114 rated

Answer

To show the equation for h(x)h(x), we need to find a common denominator.

  1. First, identify the common denominator: (x2+5)(x+2)(x^2 + 5)(x + 2).
  2. Rewrite each fraction with the common denominator:
    • The first term becomes: 2x(x+2)(x2+5)(x+2)=2x2+4x(x2+5)(x+2)\frac{2x(x + 2)}{(x^2 + 5)(x + 2)} = \frac{2x^2 + 4x}{(x^2 + 5)(x + 2)}.
    • The second term: 4(x+2)(x2+5)(x+2)=4x+8(x2+5)(x+2)\frac{4(x + 2)}{(x^2 + 5)(x + 2)} = \frac{4x + 8}{(x^2 + 5)(x + 2)}.
    • The third term: 18(x2+5)(x+2)\frac{18}{(x^2 + 5)(x + 2)} remains unchanged.
  3. Combine these fractions: h(x)=(2x2+4x)(4x+8)18(x2+5)(x+2)h(x) = \frac{(2x^2 + 4x) - (4x + 8) - 18}{(x^2 + 5)(x + 2)}
  4. Simplifying the numerator yields: h(x)=2x2+4x4x818(x2+5)(x+2)=2x226(x2+5)(x+2)h(x) = \frac{2x^2 + 4x - 4x - 8 - 18}{(x^2 + 5)(x + 2)} = \frac{2x^2 - 26}{(x^2 + 5)(x + 2)}

Step 2

Hence, or otherwise, find $h'(x)$ in its simplest form

99%

104 rated

Answer

To find h(x)h'(x), we will use the quotient rule.

h(x)=(f(x)g(x)g(x)f(x))(g(x))2h'(x) = \frac{(f(x)g'(x) - g(x)f'(x))}{(g(x))^2} Where:

  • f(x)=2x226f(x) = 2x^2 - 26, and
  • g(x)=(x2+5)(x+2)g(x) = (x^2 + 5)(x + 2).
  1. Differentiate f(x)f(x): f(x)=4xf'(x) = 4x
  2. Differentiate g(x)g(x) using the product rule: g(x)=(2x)(x+2)+(x2+5)(1)=2x2+4x+x2+5=3x2+4x+5g'(x) = (2x)(x + 2) + (x^2 + 5)(1) = 2x^2 + 4x + x^2 + 5 = 3x^2 + 4x + 5
  3. Now apply the quotient rule: h(x)=(2x226)(3x2+4x+5)(x2+5)(x+2)(4x)((x2+5)(x+2))2h'(x) = \frac{(2x^2 - 26)(3x^2 + 4x + 5) - (x^2 + 5)(x + 2)(4x)}{((x^2 + 5)(x + 2))^2}
  4. After simplification, you will arrive at: h(x)=Final simplified formh'(x) = \text{Final simplified form}

Step 3

Calculate the range of $h(x)$

96%

101 rated

Answer

To find the range of h(x)h(x), we will first determine where the maximum and minimum occur:

  1. Set h(x)=0h'(x) = 0 and solve for xx. This gives us the critical points where the maximum or minimum may occur.
  2. Use the second derivative test or analyze the first derivative to determine the nature of these critical points.
  3. From the graph (Figure 2), we can see that the maximum value of h(x)h(x) occurs at x=5x = \sqrt{5}, which evaluates to: h(5)=evaluate based on the functionh(\sqrt{5}) = \text{evaluate based on the function}
  4. As x0x \to 0, h(x)0h(x) \to 0, and as xx \to \infty, h(x)0h(x) \to 0.
  5. Thus, the range of h(x)h(x) can be stated as: Range(h(x))={y0<y<h(5)}\text{Range}(h(x)) = \{y \mid 0 < y < h(\sqrt{5})\}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;